scholarly journals Analogue of the Quantum Hanle Effect and Polarization Conversion in Non-Hermitian Plasmonic Metamaterials

Nano Letters ◽  
2012 ◽  
Vol 12 (12) ◽  
pp. 6309-6314 ◽  
Author(s):  
Pavel Ginzburg ◽  
Francisco J. Rodríguez-Fortuño ◽  
Alejandro Martínez ◽  
Anatoly V. Zayats
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thi Kim Thu Nguyen ◽  
Thi Minh Nguyen ◽  
Hong Quang Nguyen ◽  
Thanh Nghia Cao ◽  
Dac Tuyen Le ◽  
...  

AbstractA simple design of a broadband multifunctional polarization converter using an anisotropic metasurface for X-band application is proposed. The proposed polarization converter consists of a periodic array of the two-corner-cut square patch resonators based on the FR-4 substrate that achieves both cross-polarization and linear-to-circular polarization conversions. The simulated results show that the polarization converter displays the linear cross-polarization conversion in the frequency range from 8 to 12 GHz with the polarization conversion efficiency above 90%. The efficiency is kept higher than 80% with wide incident angle up to 45°. Moreover, the proposed design achieves the linear-to-circular polarization conversion at two frequency bands of 7.42–7.6 GHz and 13–13.56 GHz. A prototype of the proposed polarization converter is fabricated and measured, showing a good agreement between the measured and simulated results. The proposed polarization converter exhibits excellent performances such as simple structure, multifunctional property, and large cost-efficient bandwidth and wide incident angle insensitivity in the linear cross polarization conversion, which can be useful for X-band applications. Furthermore, this structure can be extended to design broadband polarization converters in other frequency bands.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1808
Author(s):  
Liqiang Zhuo ◽  
Huiru He ◽  
Ruimin Huang ◽  
Shaojian Su ◽  
Zhili Lin ◽  
...  

The valley degree of freedom, like the spin degree of freedom in spintronics, is regarded as a new information carrier, promoting the emerging valley photonics. Although there exist topologically protected valley edge states which are immune to optical backscattering caused by defects and sharp edges at the inverse valley Hall phase interfaces composed of ordinary optical dielectric materials, the dispersion and the frequency range of the edge states cannot be tuned once the geometrical parameters of the materials are determined. In this paper, we propose a chirped valley graphene plasmonic metamaterial waveguide composed of the valley graphene plasmonic metamaterials (VGPMs) with regularly varying chemical potentials while keeping the geometrical parameters constant. Due to the excellent tunability of graphene, the proposed waveguide supports group velocity modulation and zero group velocity of the edge states, where the light field of different frequencies focuses at different specific locations. The proposed structures may find significant applications in the fields of slow light, micro–nano-optics, topological plasmonics, and on-chip light manipulation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 586
Author(s):  
Chen-Yi Yu ◽  
Qiu-Chun Zeng ◽  
Chih-Jen Yu ◽  
Chien-Yuan Han ◽  
Chih-Ming Wang

In this study, the phase modulation ability of a dielectric Pancharatnam–Berry (PB) phase metasurface, consisting of nanofins, is theoretically analyzed. It is generally considered that the optical thickness of the unit cell of a PB-phase metasurface is λ/2, i.e., a half-waveplate for polarization conversion. It is found that the λ/2 is not essential for achieving a full 2π modulation. Nevertheless, a λ/2 thickness is still needed for a high polarization conversion efficiency. Moreover, a gradient phase metasurface is designed. With the help of the particle swarm optimization (PSO) method, the wavefront errors of the gradient phase metasurface are reduced by fine-tuning the rotation angle of the nanofins. The diffraction efficiency of the gradient phase metasurface is thus improved from 73.4% to 87.3%. This design rule can be utilized to optimize the efficiency of phase-type meta-devices, such as meta-deflectors and metalenses.


Sign in / Sign up

Export Citation Format

Share Document