scholarly journals Simple design of efficient broadband multifunctional polarization converter for X-band applications

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thi Kim Thu Nguyen ◽  
Thi Minh Nguyen ◽  
Hong Quang Nguyen ◽  
Thanh Nghia Cao ◽  
Dac Tuyen Le ◽  
...  

AbstractA simple design of a broadband multifunctional polarization converter using an anisotropic metasurface for X-band application is proposed. The proposed polarization converter consists of a periodic array of the two-corner-cut square patch resonators based on the FR-4 substrate that achieves both cross-polarization and linear-to-circular polarization conversions. The simulated results show that the polarization converter displays the linear cross-polarization conversion in the frequency range from 8 to 12 GHz with the polarization conversion efficiency above 90%. The efficiency is kept higher than 80% with wide incident angle up to 45°. Moreover, the proposed design achieves the linear-to-circular polarization conversion at two frequency bands of 7.42–7.6 GHz and 13–13.56 GHz. A prototype of the proposed polarization converter is fabricated and measured, showing a good agreement between the measured and simulated results. The proposed polarization converter exhibits excellent performances such as simple structure, multifunctional property, and large cost-efficient bandwidth and wide incident angle insensitivity in the linear cross polarization conversion, which can be useful for X-band applications. Furthermore, this structure can be extended to design broadband polarization converters in other frequency bands.

2021 ◽  
Author(s):  
Yuanyuan Jiang ◽  
Man Zhang ◽  
Weihua Wang ◽  
Zhengyong Song

Abstract Utilizing the phase transition characteristic of vanadium dioxide, we present a metamaterial configuration to achieve both reflective and transmissive cross-polarization converters. When vanadium dioxide is metal, the design behaves as a reflective cross-polarization converter. It consists of metallic grating, topas spacer, and vanadium dioxide film. Polarization conversion ratio is more than 90% in the frequency range from 4.80 THz to 13.13 THz. When vanadium dioxide is insulator, the design behaves as a transmissive cross-polarization converter using cascaded metallic gratings with rotation angle . High-efficiency broadband cross-polarization wave conversion is achieved in the frequency band of 0.50-4.75 THz. The effects of oblique incidence on reflective and transmissive modes are studied on polarization conversion. The results tell that cross-polarization conversion is better when incident angle is in the range of -. The designed metamaterial may have a certain inspiration for the research of terahertz multifunctional polarization converter.


Author(s):  
Murat Öztürk ◽  
Umur Korkut Sevim ◽  
Olcay Altıntaş ◽  
Emin Ünal ◽  
Oğuzhan Akgöl ◽  
...  

Abstract In this paper, we present a linear to circular polarization converter integrated in a concrete structure to eliminate signal transmission problem originated from the concrete buildings in microwave regime. Two polarization converter samples and a control specimen made by traditional concrete are designed and their signal transmission responses are compared experimentally. Axial ratio values which can be calculated by the ratio between the co-polar transmission and cross-polar transmission results of the proposed samples are below 3 dB and highly sufficient for linear to circular polarization conversion activity. The operating frequency for the proposed sample 1 is between 6 and 6.5 GHz with 500 MHz of bandwidth. The proposed sample 2 exhibits dual-band operation covering frequency bands, 4.58–5.13 and 6.0–6.4 GHz with bandwidths of 550 and 400 MHz, respectively. Operating frequencies of the samples are in the WIMAX frequency bands. In addition, the liner to circular polarization converter design integrated to concrete has a huge potential to improve reflection and directivity parameters of many antennas if it is considered as a radome.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Biswarup Rana ◽  
In-Gon Lee ◽  
Ic-Pyo Hong

In this paper, an electronically reconfigurable polarization converter unit cell operating at X-band is proposed. The polarization converter unit cell consists of a passive patch, a phase shifter, and an active patch. There are two PIN diodes on the active patch. By switching the bias conditions of those PIN diodes, an electronically reconfigurable polarization converter is conceived. Both the passive and active patches are circular, and there are circular types of slots on both patches to enhance the operating bandwidth. To compensate for the capacitance introduced by PIN diodes, an equivalent capacitance structure is introduced on the active patch. 2 × 2 unit cells are designed to check the performance of the unit cell for polarization conversion applications. In addition, a novel type of experimental characterization technique is proposed to check the performance of polarization conversion using 2 × 2 unit cells. Two WR-90 waveguide sections, two rectangular to square sections, and a power supply are taken for the measurements. The rectangular to square waveguide transition section is designed in such a way so that 2 × 2 unit cells can be perfectly adjusted on the transition section and the performance of the 2 × 2 unit cells can be measured. The simulation results of the 8 × 8 array are also added to a miniaturized X-band horn antenna to check the performance of the overall array.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Liang Zhang ◽  
Changqing Liu ◽  
Chun Ni ◽  
Meng Kong ◽  
Xianliang Wu

In this paper, a novel slot antenna array that is based on mirror polarization conversion metasurfaces (MPCM) is proposed. It achieves circular polarization (CP) and effectively reduces the radar cross section (RCS) and increases gain in the entire x-band. This design uses the mirrored composition of the polarization conversion metasurfaces (PCM) on the top surface of the substrate. The MPCM covers a 2 × 2 slot antenna array that is fed with by a sequentially rotating network. The CP radiation is realized by the polarization conversion characteristics of the PCM. At the same time, the reduction of RCS is achieved by 180° (±30°) reflection phase difference between two adjacent PCMs. The improvement in gain is achieved by using a Fabry–Perot cavity, which is constituted by the ground of the antenna and the PCM. Simulated and measured results show that approximately 46.4% of the operating bandwidth is in the range of 7.5–12 GHz (AR < 3 dB) and the gain of the antenna with MPCM is at least 5 dB higher than the reference antenna. Moreover, the monostatic RCS is reduced from 8 to 20 GHz.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2109
Author(s):  
Jialin Feng ◽  
Hongyu Shi ◽  
Jianjia Yi ◽  
Anxue Zhang ◽  
Zhuo Xu

Microwave devices with polarization conversion and band-pass filtering response have great application prospects on radomes. Here, the concepts of band-pass filters and cross-polarization converters are combined to realize a band-pass filtering cross-polarization converter with an extremely high polarization-conversion ratio. Most importantly, the device has an excellent out-of-band rejection level, above 30 and 40 dB for the lower and upper edges, respectively. In addition, the transmission zeros of the passband can be flexibly tuned independently. The band-pass filtering polarization converter was simulated, fabricated, and measured, and the measured results were found to be in good agreement with the simulation results.


Sign in / Sign up

Export Citation Format

Share Document