Tailoring Low-Dimensional Organic Semiconductor Nanostructures

Nano Letters ◽  
2009 ◽  
Vol 9 (1) ◽  
pp. 126-131 ◽  
Author(s):  
Matthias Treier ◽  
Manh-Thuong Nguyen ◽  
Neville V. Richardson ◽  
Carlo Pignedoli ◽  
Daniele Passerone ◽  
...  
Nanoscale ◽  
2021 ◽  
Author(s):  
Shao-Huan Hong ◽  
Shakil N. Afraj ◽  
Ping-Yu Huang ◽  
Yi-Zi Yeh ◽  
Shih-Huang Tung ◽  
...  

Low-dimensional all-inorganic perovskite quantum dots (QDs) have been increasingly developed as photo-sensing materials in the field of photodetectors because of their strong light-absorption capability and broad bandgap tunability. Here, solution-processed...


2009 ◽  
Vol 1209 ◽  
Author(s):  
Shiva Hullavarad ◽  
Nilima Hullavarad

AbstractNanoparticles, nanowires, nanorods and other kinds of nanostructures have been of great interest to scientific field. Semiconducting nanowires have attracted much attention due to the fact that reduced dimensional confinement of electrons, holes and photons make them particularly attractive as potential building blocks for nanoscale optoelectronic devices, highly quantum efficient lasers and non-linear optical converters. It is generally accepted that the low dimensional structures (where the size in one direction is equivalent to or smaller than the de Broglie wavelength) are useful materials for investigating the dependence of electrical and thermal transport or mechanical properties on the dimensionality and quantum confinement. Nanomaterials also play an important role as functional units in fabricating the electromechanical devices. Semiconductor nanostructures of different materials and shapes are investigated due to their size dependent electronic properties observable at dimensions comparable to or less than Bohr radius of exciton in these materials. Especially various oxides and sulphides have generated interests in variety of applications. In this paper, the recent progress in various nanostructures, paradigms in implementation and technology hurdles in implementing nanostructures are discussed


Author(s):  
Branislav K. Nikolic ◽  
Liviu P. Zarbo ◽  
Satofumi Souma

This article examines spin currents and spin densities in realistic open semiconductor nanostructures using different tools of quantum-transport theory based on the non-equilibrium Green function (NEGF) approach. It begins with an introduction to the essential theoretical formalism and practical computational techniques before explaining what pure spin current is and how pure spin currents can be generated and detected. It then considers the spin-Hall effect (SHE), and especially the mesoscopic SHE, along with spin-orbit couplings in low-dimensional semiconductors. It also describes spin-current operator, spindensity, and spin accumulation in the presence of intrinsic spin-orbit couplings, as well as the NEGF approach to spin transport in multiterminal spin-orbit-coupled nanostructures. The article concludes by reviewing formal developments with examples drawn from the field of the mesoscopic SHE in low-dimensional spin-orbit-coupled semiconductor nanostructures.


2017 ◽  
Vol 5 (41) ◽  
pp. 10682-10700 ◽  
Author(s):  
Shanliang Chen ◽  
Weiyou Yang

We present an overview on the fabrication, properties, and applications of flexible field emission cathodes based on low-dimensional semiconductor nanostructures.


Sign in / Sign up

Export Citation Format

Share Document