InAs Nanowire Transistors as Gas Sensor and the Response Mechanism

Nano Letters ◽  
2009 ◽  
Vol 9 (12) ◽  
pp. 4348-4351 ◽  
Author(s):  
Juan Du ◽  
Dong Liang ◽  
Hao Tang ◽  
Xuan P.A. Gao
2014 ◽  
pp. 1213-1253
Author(s):  
Jamal Mazloom ◽  
Farhad E. Ghodsi

This chapter provides a review of recent progress in gas sensor based on semiconducting metal oxide nanostructure. The response mechanism and development of various methods to enhancement of sensing properties receives the most attention. Theoretical models to explain the effects of morphology, additives, heterostructured composite and UV irradiation on response improvement were studied comprehensively. Investigations have indicated that 1D nanostructured metal oxide with unique geometry and physical properties display superior sensitivity to gas species. Also, the proposed conduction model in gas sensor based on 1D Metal oxide is discussed. Finally, the response mechanism of hierarchical and hollow nanostructures as novel sensing materials is addressed.


2019 ◽  
Vol 30 (4) ◽  
pp. 1427-1436 ◽  
Author(s):  
Joyanta K. Saha ◽  
Md. Sanwar Hossain ◽  
Manik Kumer Ghosh

Author(s):  
Keiji Tsukada ◽  
Tomiharu Yamaguchi ◽  
Toshihiko Kiwa ◽  
Hironobu Yamada

2008 ◽  
Vol 133 (2) ◽  
pp. 538-542 ◽  
Author(s):  
T. Yamaguchi ◽  
M. Takisawa ◽  
T. Kiwa ◽  
H. Yamada ◽  
K. Tsukada

Author(s):  
Sajad Pirsa

Chemiresistive gas sensor based on conducting polymer is a type of sensors that presents gas sensors with excellent characters; low-cost fabrication, fast detection, simultaneous determination (array gas sensor), portable devices and so. Theses gas sensors are commonly based on polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh) and their derivatives as a transducer. Common configuration and response mechanism of these sensors are reported in this section. Some factors that induce selectivity to these sensors are discussed. Different materials (conductor or insulant) can be used as a substrate of polymerization. Type of substrate, selective membranes, surface modification of conducting polymer and so can change response behavior of these sensors.


Author(s):  
Sajad Pirsa

Chemiresistive gas sensor based on conducting polymer is a type of sensors that presents gas sensors with excellent characters; low-cost fabrication, fast detection, simultaneous determination (array gas sensor), portable devices and so. Theses gas sensors are commonly based on polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh) and their derivatives as a transducer. Common configuration and response mechanism of these sensors are reported in this section. Some factors that induce selectivity to these sensors are discussed. Different materials (conductor or insulant) can be used as a substrate of polymerization. Type of substrate, selective membranes, surface modification of conducting polymer and so can change response behavior of these sensors.


Author(s):  
Jamal Mazloom ◽  
Farhad E. Ghodsi

This chapter provides a review of recent progress in gas sensor based on semiconducting metal oxide nanostructure. The response mechanism and development of various methods to enhancement of sensing properties receives the most attention. Theoretical models to explain the effects of morphology, additives, heterostructured composite and UV irradiation on response improvement were studied comprehensively. Investigations have indicated that 1D nanostructured metal oxide with unique geometry and physical properties display superior sensitivity to gas species. Also, the proposed conduction model in gas sensor based on 1D Metal oxide is discussed. Finally, the response mechanism of hierarchical and hollow nanostructures as novel sensing materials is addressed.


1987 ◽  
Vol 57 (02) ◽  
pp. 222-225 ◽  
Author(s):  
A H Soberay ◽  
M C Herzberg ◽  
J D Rudney ◽  
H K Nieuwenhuis ◽  
J J Sixma ◽  
...  

SummaryThe ability of endocarditis and dental strains of Streptococcus sanguis to induce platelet aggregation in plasma (PRP) from normal subjects were examined and compared to responses of PRP with known platelet membrane glycoprotein (GP) and response defects. S. sanguis strains differed in their ability to induce normal PRPs to aggregate. Strains that induced PRP aggregation in more than 60% of donors were significantly faster agonists (mean lag times to onset of aggregation less than 6 min) than those strains inducing response in PRPs of fewer than 60% of donors.Platelets from patients with Bernard-Soulier syndrome aggregated in response to strains of S. sanguis. In contrast, platelets from patients with Glanzmann’s thrombasthenia and from a patient with a specific defect in response to collagen were unresponsive to S. sanguis. These observations show that GPIb and V are not essential, but GPIIb-IIIa and GPIa are important in the platelet response mechanism to S. sanguis. Indeed, the data suggests that the platelet interaction mechanisms of S. sanguis and collagen may be similar.


Sign in / Sign up

Export Citation Format

Share Document