Evaluation of Triplet Aromaticity by the Isomerization Stabilization Energy

2013 ◽  
Vol 15 (10) ◽  
pp. 2442-2445 ◽  
Author(s):  
Jun Zhu ◽  
Ke An ◽  
Paul von Ragué Schleyer
Keyword(s):  
1993 ◽  
Vol 58 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Rudolf Zahradník

The energies and heats of ion-molecule reactions have been calculated (MP4/6-31G**//6-31G** or better level) and compared with the experimental values obtained from the heats of formation. Two main types of reactions have been studied: (i) AHn + AHn+• ↔ AHn+1+ + AHn-1• (A = C to F and Si to Cl), (ii) AHn + BHm+• ↔ AHn+1+ + BHm-1• or AHn-1+• + BHm+1+ (A and B = C to F). In contrast to (i), processes of type (ii) permit easy differentiation between the proton transfer and hydrogen atom abstraction mechanisms. A third type of interaction involves reactions with radical anions (A = Li to F); comparison was made with analogous processes with radical cations. A brief comment is made about the influence of the level of computational sophistication on the energies and heats of reaction, as well as on the stabilization energy of a hydrogen bonded intermediate, a structure which is similar to that of the reaction products.


1975 ◽  
Vol 6 (4) ◽  
Author(s):  
JEAN F. M. OTH ◽  
JEAN-CLAUDE BUENZLI ◽  
YVES DE JULIEN DE ZELICOURT
Keyword(s):  

2015 ◽  
Vol 93 (3) ◽  
pp. 279-288 ◽  
Author(s):  
Rupinder preet Kaur ◽  
Damanjit Kaur ◽  
Ritika Sharma

The present investigation deals with the study of the N–H bond dissociation enthalpies (BDEs) of the Y-substituted (NH2-C(=X)Y-R) and N-substituted ((R)(H)NC(=X)YH) carbamates (X, Y = O, S, Se; R = H, CH3, F, Cl, NH2), which have been evaluated using ab initio and density functional methods. The variations in N−H BDEs of these Y-substituted and N-substituted carbamates as the effect of substituent have been understood in terms of molecule stabilization energy (ME) and radical stabilization energy (RE), which have been calculated using the isodesmic reactions. The natural bond orbital analysis indicated that the electrodelocalization of the lone pairs of heteroatoms in the molecules and radicals affect the ME and RE values depending upon the type and site of substitution (whether N- or Y-). The variations in N−H BDEs depend upon the combined effect of molecule stabilization and radical stabilization by the various substituents.


1995 ◽  
Vol 34 (12) ◽  
pp. 3253-3259 ◽  
Author(s):  
David A. Johnson ◽  
Peter G. Nelson

Author(s):  
Yevheniia Velihina ◽  
Nataliya Obernikhina ◽  
Stepan Pilyo ◽  
Maryna Kachaeva ◽  
Oleksiy Kachkovsky ◽  
...  

The binding affinity of model aromatic amino acids and heterocycles and their derivatives condensed with pyridine were investigated in silico and are presented in the framework of fragment-to-fragment approach. The presented model describes interaction between pharmacophores and biomolecules. Scrupulous data analysis shows that expansion of the π-electron system by heterocycles annelation causes the shifting up of high energy levels, while the appearance of new the dicoordinated nitrogen atom is accompanied by decreasing of the donor-acceptor properties. Density Functional Theory (DFT) wB97XD/6-31(d,p)/calculations of π-complexes of the heterocycles 1-3 with model fragments of aromatic amino acids, which were formed by π-stack interaction, show an increase in the stabilization energy of π-complexes during the moving from phenylalanine to tryptophan. DFT calculation of pharmacophore complexes with model proton-donor amino acid by the hydrogen bonding mechanism (H-B complex) shows that stabilization energy (DE) increases from monoheterocycles to their condensed derivatives. The expansion of the π-electron system by introducing phenyl radicals to the oxazole cycle as reported earlier [18] leads to a decrease in the stabilization energy of the [Pharm-BioM] complexes in comparison with the annelated oxazole by the pyridine cycle.


1974 ◽  
Vol 57 (7) ◽  
pp. 2276-2288 ◽  
Author(s):  
Jean F. M. Oth ◽  
Jean-Claude Bünzli ◽  
Yves de Julien de Zélicourt
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document