Preparation, structure, and properties of paramagnetic, heterobinuclear complexes containing nickel and molybdenum or tungsten. X-ray crystal structure of [NiW(CO)3(PPh3)2(.eta.-C5H5)]

1985 ◽  
Vol 4 (6) ◽  
pp. 1138-1140 ◽  
Author(s):  
Laurence. Carlton ◽  
W. Edward. Lindsell ◽  
Kevin J. McCullough ◽  
Peter N. Preston
ChemInform ◽  
2010 ◽  
Vol 22 (9) ◽  
pp. no-no
Author(s):  
W. P. GRIFFITH ◽  
J. M. JOLLIFFE ◽  
S. V. LEY ◽  
D. J. WILLIAMS

PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0123338 ◽  
Author(s):  
Craig Don Paul ◽  
Daouda A. K. Traore ◽  
Seth Olsen ◽  
Rodney J. Devenish ◽  
Devin W. Close ◽  
...  

Author(s):  
Vidadi A. Rzaguliyev ◽  
Oruj S. Kerimli ◽  
Dilbar S. Ajdarova ◽  
Sharafat H. Mammadov ◽  
Ozbek M. Aliev

Комплексными методами физико-химического анализа (дифференциально-термический, рентгенофазовый, микроструктурный, измерение микротвердости и определение плотности) изучены фазовые равновесия и построены Т–х фазовые диаграммыв системах Ag8SnS6–Cu2SnS3 и Ag2SnS3–Cu2Sn4S9. Показано, что система Ag8SnS6–Cu2SnS3является квазибинарным сечением квазитройной системы Ag2S-SnS2-Cu2S и относится кпростому эвтектическому типу с ограниченными областями растворимости на основеисходных сульфидов. Координаты эвтектической точки: 50 mol % Ag2SnS3 И Т = 900 К.Растворимость на основе Ag8SnS6 и Cu2SnS3 при эвтектической температуре простираетсядо 20 и 28 mol % соответственно. С уменьшением температуры твердые растворы распадаются и при 300 К составляют 5 и 10 mol %. Установлено, что с увеличением концентрацииAg8SnS6 в твердых растворах (Cu2SnS3)1-х (Ag8SnS6)х параметр кубической решетки увеличивается от а = 0.5445 nm (для чистого Cu2SnS3) до а = 0.725 nm (для состава х = 0.1) т. е. концентрационная зависимость параметра решетки имеет линейный характер.Система Ag2SnS3–Cu2Sn4S9 из-за перитектического плавления Cu2Sn4S9 имеет сложный характер и является частично квазибинарным сечением. Квазибинарность нарушается вобласти концентрации 65-100 mol % Cu2Sn4S9 и выше температуры 900 К. Твердые растворына основе Ag2SnS3 и Cu2Sn4S9 узкие и при 300 К составляют 10; 2.5 mol % соответственно         ЛИТЕРАТУРА1. Wang N., Fan A. K. An experimental study of the Ag2S-SnS2 pseudobinary join // Neues Jahrb. Mineral.-Abh, 1989, v. 160, pp. 33–36.2. Wang N. New data for Ag8SnS6 (canfeildite) and Ag8GeS6 (argyrodite) // Neues Jahrb. Mineral. Monatsh.,1978, pp. 269–272.3. Бабанлы М. Б., Юсибов Ю. А., Абишев В. Т. Трехкомпонентные халькогениды на основе медии серебра. Баку: Изд-во БГУ, 1993, 342 с.4. Parasyuk O. V., Chykhrij S. I., Bozhko V. V., Piskach L. V., Bogdanyuk M. S., Olekseyuk I. D.,Bulatetska L. V., Pekhnyo. Phase diagramm of the Ag2S–HgS–SnS2 system and single crystal prepartion,crystal structure and properties of Ag2HgSnS4 // J. Alloys and Compounds, 2005, v. 399, pp. 32–37. DOI:            https://doi.org/10.1016/j.jallcom.2005.03.0085. Olekseyuk I. D., Dudchak I. B., Piskach L. V. Phase equilibria in the Cu2S–ZnSe–SnS2 // J. Alloys andCompounds, 2004, v. 368, pp. 135–143. https:doi.org/10.1016/j.jallcom.2003.08.0846. Ollitrault-Fitchet R., Rivet J., Flahaut J., et.al. Description du systeme ternaire Ag–Sn–Se // J. Less-Common. Met., 1988, v. 138(2), pp. 241–261. DOI:https://doi.org/10.1016/0022-5088(88)90113-07. Delgado C. E., Mora A. J., Marcano E. Crystal structure refi nement of the semiconducting compoundCu2SnSe3 from X-ray powder difraction data // Mater. Res. Bull., 2003, v. 38, pp. 1949–1955. DOI: https://doi.org/10.1016/j.materresbull.2003.09.0178. Parasyuk O. V., Olekseyuk I. D., Marchuk O. V. The Cu2Se–HgSe–SnSe2 // J. Alloys and Compounds.,1999, v. 287, pp. 197–205. DOI: https//doi.org/10.1016/S0925-8388(99)00047-X9. Parasyuk O. V., Gulay L. D., Piskach L. V., Kumanska Yu. O. The Ag2Se–HgSe–SnSe2 system and thecrystal structure of the Ag2HgSnSe4 // J. Alloys and Сompounds, 2002, v. 339, pp.1 40–143. DOI: https//doi.org/10.1016/S0925-8388(01)01985-510. Babanly M. B., Yusibov Y. A., Babanly N. B. Electromotive force and measucement in several systema.Ed. by S. Kara, Intechneb. Org., 2011, pp. 57–58.11. Gulay L. D., Olekseyuk I. D., Parasyuk O. V. Crystal structure of b-Ag8SnSe6 // J. Alloys and compounds,2002, v. 339, pp. 113–117. DOI: https//doi.org/10.1016/S0925-8388(01)01970-312. Гусейнов Г. М. Получение соединения Ag8SnS6 в среде диметилформамида // Вестн. Томского гос. ун-та. Химия, 2016, № 1(3), c. 24–34. Режим доступа: fi le:///C:/Users/Lab351/Downloads/sub_%20%20in%20dimethylformamide%20medium.pdf (дата обращения: 19.09.2019)13. Gorchov O. Les composes Ag8MX6 (M = Si, Ge, Sn et X = S, Se, Te) // Bull. Soc. Chim. Fr., 1968, № 6.pp. 2263–2275.14. Kokhan O. P. The Interactions in Ag2X–BIVX2 (BIV – Si, Ge, Sn; X – S, Se) systems and the propertiesof compounds. Doctoral Thesis, Uzhgorod, Uzhgorod State Univ., 1996.15. Onoda U., Chen X. A., Sato A., Wada H. Crystal structure and twinning of monoclinic Cu2SnS3 // Mater.Res. Bull., 2000, v. 35, № 8, pp. 1563–1570. DOI: https//doi.org/10.1016/S0025-5408(00)00347-016. Рзагулиев В. А., Керимли О. Ш., Мамедов Ш. Г. Изучение квазитройной системы Ag2S–SnS2–Cu2S по разрезу Ag8SnS6–Cu2SnS3. Труды Международ. научно–практич. конф., Россия, Белгород,2019, c. 18.17. Рзагулиев В. А., Керимли О. Ш., Маме дов Ш. Г. Исследование квазибинарного разреза Cu2SnS3–Ag2SnS3 в квазитройной системеAg2S–Cu2S–SnS2 . Труды XXI Междун. конф., Санкт-Петербург, 2019,c. 20–21.18. Цигика В. В., Переш Е. Ю., Лазарев В. В. и др. Получение и свойства мнонокристаллов соединений/TlPbJ3, Tl3PbJ5, TlSnJ3, TlSn2J5 and Tl3PbBr5 Изв. АН СССР. Неорган. материалы, 1981, т. 17(6), c. 970–974.


2009 ◽  
Vol 79-82 ◽  
pp. 1619-1622
Author(s):  
Ming Jian Ding ◽  
Wan Ping Chen ◽  
Yan Hong Gu ◽  
Yu Wang

Nb2O5 ceramic pellets were prepared through sintering and hydrogen was introduced into Nb2O5 pellets through a process known as electrochemical hydrogen charging, in which Nb2O5 acted as the cathode in a 0.01 M NaOH solution. The color of Nb2O5 was found dramatically darkened after the treatment while X-ray diffraction indicated that there was no change in the crystal structure. I-V and R-T measurements showed that the resistivity was greatly decreased after hydrogen charging and the resistivity exhibited a negative-temperature-coefficient (NTC). It was proposed that hydrogen can be incorporated into Nb2O5 lattice and occupies at some interstitial site. Nb5+ of Nb2O5 is partially reduced to Nb4+ by hydrogen and the NTC-type conduction results from electron transfer between Nb5+ and Nb4+ through a hopping mechanism.


2010 ◽  
Vol 168-169 ◽  
pp. 157-160 ◽  
Author(s):  
N.V. Baranov ◽  
N.V. Selezneva ◽  
Valery G. Pleshchev ◽  
N.V. Mushnikov ◽  
V.I. Maksimov

The intercalated compound Fe0.5TiSe2 has been studied by means of X-ray, neutron diffraction, electrical resistivity and magnetization measurements. This compound with Fe atoms located between Se-Ti-Se sandwiches has a monoclinic crystal structure and exhibits a long-range antiferromagnetic (AF) ordering below TN = 135 K. At T < TN, the Fe magnetic moments with a value ~ 3.0 µB are directed at an angle of (74.4±0.5)º to the layers and form a tilted antiferromagnetic structure with the propagation vector (½, 0, ½). It has been shown that application of magnetic field above 300 kOe may lead to transformations of the AF structure.


1996 ◽  
Vol 51 (8) ◽  
pp. 1079-1083 ◽  
Author(s):  
N. Stock ◽  
W. Schnick

Coarse crystalline (NH2)2(O)P-N=P(NH2)3 is obtained from a NH3 saturated CH2Cl2 suspension of (NH2)2(O)P-N=P(NH2)3 NH4Cl at room temperature. (NH2)2(O)P-N=P(NH2)3·NH4Cl is synthesized by slow addition of Cl2(O)P-N=PCl3 to a solution of NH3 in CH2Cl2 at -78 °C. Excess NH4Cl is removed by treatment with HNEt2 followed by extraction with CH2Cl2. The crystal structure of (NH2)2(O)P-N=P(NH2)3 has been determined by single crystal X-ray methods (P21/c; a = 1462.8(3), b = 944.8(2), c = 1026.9(2) pm, β = 110.69(3)°; Z = 8). In the unit cell there are two crystallographically unique molecules. They form a three dimensional network by intermolecular hydrogen bonding interactions (N-H···N ≥ 313 pm. N-H···O ≥ 293 pm). The investigation of the thermal properties shows decomposition with evolution of NH3 above 80 °C.


Sign in / Sign up

Export Citation Format

Share Document