scholarly journals Insights into aqueous solvation of atmospheric gases from molecular simulations with machine learning-based many-body potentials

Author(s):  
Andreas W. Goetz ◽  
Vinícius Wilian D. Cruzeiro ◽  
Ronak Roy
2021 ◽  
Author(s):  
Tom Young ◽  
Tristan Johnston-Wood ◽  
Volker L. Deringer ◽  
Fernanda Duarte

Predictive molecular simulations require fast, accurate and reactive interatomic potentials. Machine learning offers a promising approach to construct such potentials by fitting energies and forces to high-level quantum-mechanical data, but...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weishun Zhong ◽  
Jacob M. Gold ◽  
Sarah Marzen ◽  
Jeremy L. England ◽  
Nicole Yunger Halpern

AbstractDiverse many-body systems, from soap bubbles to suspensions to polymers, learn and remember patterns in the drives that push them far from equilibrium. This learning may be leveraged for computation, memory, and engineering. Until now, many-body learning has been detected with thermodynamic properties, such as work absorption and strain. We progress beyond these macroscopic properties first defined for equilibrium contexts: We quantify statistical mechanical learning using representation learning, a machine-learning model in which information squeezes through a bottleneck. By calculating properties of the bottleneck, we measure four facets of many-body systems’ learning: classification ability, memory capacity, discrimination ability, and novelty detection. Numerical simulations of a classical spin glass illustrate our technique. This toolkit exposes self-organization that eludes detection by thermodynamic measures: Our toolkit more reliably and more precisely detects and quantifies learning by matter while providing a unifying framework for many-body learning.


2018 ◽  
Vol 20 (35) ◽  
pp. 22987-22996 ◽  
Author(s):  
Samik Bose ◽  
Diksha Dhawan ◽  
Sutanu Nandi ◽  
Ram Rup Sarkar ◽  
Debashree Ghosh

A new machine learning based approach combining support vector regression (SVR) and many body expansion (MBE) that can predict the interaction energies of water clusters with high accuracy (for decamers: 2.78% of QM estimates).


2020 ◽  
Vol 153 (14) ◽  
pp. 144501 ◽  
Author(s):  
Yuan-Bin Liu ◽  
Jia-Yue Yang ◽  
Gong-Ming Xin ◽  
Lin-Hua Liu ◽  
Gábor Csányi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document