Infinite-Dimensional Representations of the Lie Algebra \mathfrakgl(n,C) Related to Complex Analogs of the Gelfand–Tsetlin Patterns and General Hypergeometric Functions on the Lie Group GL(n,C)

2004 ◽  
Vol 81 (1) ◽  
pp. 93-120 ◽  
Author(s):  
M. I. Graev
2019 ◽  
Vol 31 (5) ◽  
pp. 1139-1177
Author(s):  
Maximilian Hanusch

AbstractWe solve the differentiability problem for the evolution map in Milnor’s infinite-dimensional setting. We first show that the evolution map of each {C^{k}}-semiregular Lie group G (for {k\in\mathbb{N}\sqcup\{\mathrm{lip},\infty\}}) admits a particular kind of sequentially continuity – called Mackey k-continuity. We then prove that this continuity property is strong enough to ensure differentiability of the evolution map. In particular, this drops any continuity presumptions made in this context so far. Remarkably, Mackey k-continuity arises directly from the regularity problem itself, which makes it particular among the continuity conditions traditionally considered. As an application of the introduced notions, we discuss the strong Trotter property in the sequentially and the Mackey continuous context. We furthermore conclude that if the Lie algebra of G is a Fréchet space, then G is {C^{k}}-semiregular (for {k\in\mathbb{N}\sqcup\{\infty\}}) if and only if G is {C^{k}}-regular.


2010 ◽  
Vol 21 (11) ◽  
pp. 1387-1399
Author(s):  
NING ZHANG

The loop space Lℙ1 of the Riemann sphere consisting of all Ck or Sobolev Wk, p maps S1 → ℙ1 is an infinite dimensional complex manifold. We compute the Picard group pic(Lℙ1) of holomorphic line bundles on Lℙ1 as an infinite dimensional complex Lie group with Lie algebra the Dolbeault group H0, 1(Lℙ1). The group G of Möbius transformations and its loop group LG act on Lℙ1. We prove that an element of pic(Lℙ1) is LG-fixed if it is G-fixed, thus completely answering the question of Millson and Zombro about the G-equivariant projective embedding of Lℙ1.


2009 ◽  
Vol 146 (2) ◽  
pp. 351-378 ◽  
Author(s):  
K. H. HOFMANN ◽  
K.-H. NEEB

AbstractA pro-Lie group is a projective limit of a family of finite-dimensional Lie groups. In this paper we show that a pro-Lie group G is a Lie group in the sense that its topology is compatible with a smooth manifold structure for which the group operations are smooth if and only if G is locally contractible. We also characterize the corresponding pro-Lie algebras in various ways. Furthermore, we characterize those pro-Lie groups which are locally exponential, that is, they are Lie groups with a smooth exponential function which maps a zero neighbourhood in the Lie algebra diffeomorphically onto an open identity neighbourhood of the group.


2011 ◽  
Vol 2011 ◽  
pp. 1-35 ◽  
Author(s):  
V. Tryhuk ◽  
V. Chrastinová ◽  
O. Dlouhý

A Lie group acting on finite-dimensional space is generated by its infinitesimal transformations and conversely, any Lie algebra of vector fields in finite dimension generates a Lie group (the first fundamental theorem). This classical result is adjusted for the infinite-dimensional case. We prove that the (local,C∞smooth) action of a Lie group on infinite-dimensional space (a manifold modelled onℝ∞) may be regarded as a limit of finite-dimensional approximations and the corresponding Lie algebra of vector fields may be characterized by certain finiteness requirements. The result is applied to the theory of generalized (or higher-order) infinitesimal symmetries of differential equations.


2014 ◽  
Vol 57 (2) ◽  
pp. 283-288 ◽  
Author(s):  
Ronald Fulp

AbstractFor Dewitt super groups G modeled via an underlying finitely generated Grassmann algebra it is well known that when there exists a body group BG compatible with the group operation on G, then, generically, the kernel K of the body homomorphism is nilpotent. This is not true when the underlying Grassmann algebra is infinitely generated. We show that it is quasi-nilpotent in the sense that as a Banach Lie group its Lie algebra κ has the property that for each a ∊ κ ada has a zero spectrum. We also show that the exponential mapping from κ to K is surjective and that K is a quotient manifold of the Banach space κ via a lattice in κ.


Author(s):  
Ercüment H. Ortaçgil
Keyword(s):  

The discussions up to Chapter 4 have been concerned with the Lie group. In this chapter, the Lie algebra is constructed by defining the operators ∇ and ∇̃.


Author(s):  
Ommolbanin Behzad ◽  
André Contiero ◽  
Letterio Gatto ◽  
Renato Vidal Martins

AbstractAn explicit description of the ring of the rational polynomials in r indeterminates as a representation of the Lie algebra of the endomorphisms of the k-th exterior power of a countably infinite-dimensional vector space is given. Our description is based on results by Laksov and Throup concerning the symmetric structure of the exterior power of a polynomial ring. Our results are based on approximate versions of the vertex operators occurring in the celebrated bosonic vertex representation, due to Date, Jimbo, Kashiwara and Miwa, of the Lie algebra of all matrices of infinite size, whose entries are all zero but finitely many.


2005 ◽  
Vol 15 (03) ◽  
pp. 793-801 ◽  
Author(s):  
ANTHONY M. BLOCH ◽  
ARIEH ISERLES

In this paper we develop a theory for analysing the "radius" of the Lie algebra of a matrix Lie group, which is a measure of the size of its commutators. Complete details are given for the Lie algebra 𝔰𝔬(n) of skew symmetric matrices where we prove [Formula: see text], X, Y ∈ 𝔰𝔬(n), for the Frobenius norm. We indicate how these ideas might be extended to other matrix Lie algebras. We discuss why these ideas are of interest in applications such as geometric integration and optimal control.


Author(s):  
C. J. Atkin

In a long sequence of notes in the Comptes Rendus and elsewhere, and in the papers [1], [2], [3], [6], [7], Lichnerowicz and his collaborators have studied the ‘classical infinite-dimensional Lie algebras’, their derivations, automorphisms, co-homology, and other properties. The most familiar of these algebras is the Lie algebra of C∞ vector fields on a C∞ manifold. Another is the Lie algebra of ‘Poisson brackets’, that is, of C∞ functions on a C∞ symplectic manifold, with the Poisson bracket as composition; some questions concerning this algebra are of considerable interest in the theory of quantization – see, for instance, [2] and [3].


Sign in / Sign up

Export Citation Format

Share Document