A note on the algebra of Poisson brackets

Author(s):  
C. J. Atkin

In a long sequence of notes in the Comptes Rendus and elsewhere, and in the papers [1], [2], [3], [6], [7], Lichnerowicz and his collaborators have studied the ‘classical infinite-dimensional Lie algebras’, their derivations, automorphisms, co-homology, and other properties. The most familiar of these algebras is the Lie algebra of C∞ vector fields on a C∞ manifold. Another is the Lie algebra of ‘Poisson brackets’, that is, of C∞ functions on a C∞ symplectic manifold, with the Poisson bracket as composition; some questions concerning this algebra are of considerable interest in the theory of quantization – see, for instance, [2] and [3].

Author(s):  
DMITRI I. PANYUSHEV ◽  
OKSANA S. YAKIMOVA

AbstractLet 𝔮 be a finite-dimensional Lie algebra. The symmetric algebra (𝔮) is equipped with the standard Lie–Poisson bracket. In this paper, we elaborate on a surprising observation that one naturally associates the second compatible Poisson bracket on (𝔮) to any finite order automorphism ϑ of 𝔮. We study related Poisson-commutative subalgebras (𝔮; ϑ) of 𝒮(𝔮) and associated Lie algebra contractions of 𝔮. To obtain substantial results, we have to assume that 𝔮 = 𝔤 is semisimple. Then we can use Vinberg’s theory of ϑ-groups and the machinery of Invariant Theory.If 𝔤 = 𝔥⊕⋯⊕𝔥 (sum of k copies), where 𝔥 is simple, and ϑ is the cyclic permutation, then we prove that the corresponding Poisson-commutative subalgebra (𝔮; ϑ) is polynomial and maximal. Furthermore, we quantise this (𝔤; ϑ) using a Gaudin subalgebra in the enveloping algebra 𝒰(𝔤).


2003 ◽  
Vol 12 (05) ◽  
pp. 589-604
Author(s):  
Hideaki Nishihara

Weight systems are constructed with solvable Lie algebras and their infinite dimensional representations. With a Heisenberg Lie algebra and its polynomial representations, the derived weight system vanishes on Jacobi diagrams with positive loop-degree on a circle, and it is proved that the derived knot invariant is the inverse of the Alexander-Conway polynomial.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1354 ◽  
Author(s):  
Hassan Almusawa ◽  
Ryad Ghanam ◽  
Gerard Thompson

In this investigation, we present symmetry algebras of the canonical geodesic equations of the indecomposable solvable Lie groups of dimension five, confined to algebras A 5 , 7 a b c to A 18 a . For each algebra, the related system of geodesics is provided. Moreover, a basis for the associated Lie algebra of the symmetry vector fields, as well as the corresponding nonzero brackets, are constructed and categorized.


1997 ◽  
Vol 12 (22) ◽  
pp. 1589-1595 ◽  
Author(s):  
E. H. El Kinani

The class of pseudo-differential operators Lie algebra [Formula: see text] on the quantum plane [Formula: see text] is introduced. The embedding of certain infinite-dimensional Lie algebras which occur in the physics literature in [Formula: see text] is discussed as well as the correspondence between [Formula: see text] and [Formula: see text] as k→+∞ is examined.


2017 ◽  
Vol 14 (11) ◽  
pp. 1750160 ◽  
Author(s):  
Viktor Abramov

Given a matrix Lie algebra one can construct the 3-Lie algebra by means of the trace of a matrix. In the present paper, we show that this approach can be extended to the infinite-dimensional Lie algebra of vector fields on a manifold if instead of the trace of a matrix we consider a differential 1-form which satisfies certain conditions. Then we show that the same approach can be extended to matrix Lie superalgebras [Formula: see text] if instead of the trace of a matrix we make use of the supertrace of a matrix. It is proved that a graded triple commutator of matrices constructed with the help of the graded commutator and the supertrace satisfies a graded ternary Filippov–Jacobi identity. In two particular cases of [Formula: see text] and [Formula: see text], we show that the Pauli and Dirac matrices generate the matrix 3-Lie superalgebras, and we find the non-trivial graded triple commutators of these algebras. We propose a Clifford algebra approach to 3-Lie superalgebras induced by Lie superalgebras. We also discuss an application of matrix 3-Lie superalgebras in BRST-formalism.


2001 ◽  
Vol 03 (04) ◽  
pp. 533-548 ◽  
Author(s):  
NAIHUAN JING ◽  
KAILASH C. MISRA ◽  
CARLA D. SAVAGE

Basil Gordon, in the sixties, and George Andrews, in the seventies, generalized the Rogers–Ramanujan identities to higher moduli. These identities arise in many areas of mathematics and mathematical physics. One of these areas is representation theory of infinite dimensional Lie algebras, where various known interpretations of these identities have led to interesting applications. Motivated by their connections with Lie algebra representation theory, we give a new interpretation of a sum related to generalized Rogers–Ramanujan identities in terms of multi-color partitions.


Author(s):  
Artem Atanov ◽  
Alexander Loboda

This paper studies holomorphic homogeneous real hypersurfaces in C3 associated with the unique non-solvable indecomposable 5-dimensional Lie algebra 𝑔5 (in accordance with Mubarakzyanov’s notation). Unlike many other 5-dimensional Lie algebras with “highly symmetric” orbits, non-degenerate orbits of 𝑔5 are “simply homogeneous”, i.e. their symmetry algebras are exactly 5-dimensional. All those orbits are equivalent (up to holomorphic equivalence) to the specific indefinite algebraic surface of the fourth order. The proofs of those statements involve the method of holomorphic realizations of abstract Lie algebras. We use the approach proposed by Beloshapka and Kossovskiy, which is based on the simultaneous simplification of several basis vector fields. Three auxiliary lemmas formulated in the text let us straighten two basis vector fields of 𝑔5 and significantly simplify the third field. There is a very important assumption which is used in our considerations: we suppose that all orbits of 𝑔5 are Levi non-degenerate. Using the method of holomorphic realizations, it is easy to show that one need only consider two sets of holomorphic vector fields associated with 𝑔5. We prove that only one of these sets leads to Levi non-degenerate orbits. Considering the commutation relations of 𝑔5, we obtain a simplified basis of vector fields and a corresponding integrable system of partial differential equations. Finally, we get the equation of the orbit (unique up to holomorphic transformations) (𝑣 − 𝑥2𝑦1)2 + 𝑦2 1𝑦2 2 = 𝑦1, which is the equation of the algebraic surface of the fourth order with the indefinite Levi form. Then we analyze the obtained equation using the method of Moser normal forms. Considering the holomorphic invariant polynomial of the fourth order corresponding to our equation, we can prove (using a number of results obtained by A.V. Loboda) that the upper bound of the dimension of maximal symmetry algebra associated with the obtained orbit is equal to 6. The holomorphic invariant polynomial mentioned above differs from the known invariant polynomials of Cartan’s and Winkelmann’s types corresponding to other hypersurfaces with 6- dimensional symmetry algebras.


2019 ◽  
Vol 31 (4) ◽  
pp. 943-949
Author(s):  
Rafael B. Andrist

Abstract There exist three vector fields with complete polynomial flows on {\mathbb{C}^{n}} , {n\geq 2} , which generate the Lie algebra generated by all algebraic vector fields on {\mathbb{C}^{n}} with complete polynomial flows. In particular, the flows of these vector fields generate a group that acts infinitely transitively. The analogous result holds in the holomorphic setting.


2019 ◽  
Vol 56 (3) ◽  
pp. 280-296
Author(s):  
Abdaoui Meher

Abstract Let Vect (ℝℙ1) be the Lie algebra of smooth vector fields on ℝℙ1. In this paper, we classify -invariant linear differential operators from Vect (ℝℙ1) to vanishing on , where is the space of bilinear differential operators acting on weighted densities. This result allows us to compute the first differential -relative cohomology of Vect (ℝℙ1) with coefficients in .


Sign in / Sign up

Export Citation Format

Share Document