Extraversion and Dopamine

1998 ◽  
Vol 3 (1) ◽  
pp. 37-50 ◽  
Author(s):  
Thomas H. Rammsayer

Recent research suggests that individual differences in brain dopamine (DA) functioning may be related to the personality dimension of extraversion. The present study was designed to further elucidate the biological mechanisms underlying behavioral differences between extraverts and introverts. For this purpose, the differential effects of a pharmacologically induced blockade of mesolimbocortical DA D2 receptors on reaction-time performance were investigated in 24 introverted and 24 extraverted subjects. Introverts were found to be much more susceptible to pharmacologically induced changes in D2 receptor activity than extraverts. This finding provides additional experimental evidence for the notion that individual differences in D2 receptor responsivity may represent a neurobiological substratum for the personality dimension of extraversion.

2022 ◽  
Author(s):  
Ethan Michael McCormick ◽  
Rogier Kievit

Most prior research in the neural and behavioral sciences has been focused on characterizing averages in cognition, brain characteristics, or behavior, and attempting to predict differences in these averages among individuals. However, this overwhelming focus on mean levels may leave us with an incomplete picture of what drives individual differences in behavioral phenotypes by ignoring the variability of behavior around an individual’s mean. In particular, better white matter (WM) structural microstructure has been hypothesized to support consistent behavioral performance by decreasing gaussian noise in signal transfer. In contrast, lower indices of white matter microstructure have been associated with greater within-subject variance in the ability to deploy performance-related resources, especially in clinical samples. We tested this ‘neural noise’ hypothesis in a large adult lifespan cohort (Cam-CAN) with over 2500 individuals in a (2681 behavioral sessions with 708 scans in adults aged 18–102) using measures of WM tract microstructure to predict mean levels and variability in reaction time performance on a simple behavioral task using a dynamic structural equation model (DSEM). We found broad support for neural noise hypothesis, such that lower WM microstructure predicted individual differences in separable components of behavioral performance estimated using DSEM, including slower mean responses and increased variability. These effects were robust when including age in the model, suggesting consistent effects of WM microstructure across the adult lifespan above and beyond concurrent effects of ageing. Crucially, these results demonstrate the utility of DSEM for modeling and predicting behavioral variability directly, and the promise of studying variability for understanding cognitive processes.


2020 ◽  
Vol 13 ◽  
Author(s):  
Ritesh Daya ◽  
Joella Ho ◽  
Sharon Thomson ◽  
Jayant Bhandari ◽  
Ram K. Mishra

Background: Allosteric modulators of G-protein coupled receptors regulate receptor activity by binding to sites other than the active site and have emerged as a new and highly desirable class of drugs. PAOPA (3(R)-[(2(S)- pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide), a peptidomimetic analog of Prolyl-Leucyl-Glycinamide, is a potent dopamine D2 receptor allosteric modulator. PAOPA has shown therapeutic effects in pre-clinical models of schizophrenia and extrapyramidal dysfunction. Objective: in this study, we sought to examine the biomolecular underpinnings of PAOPA‘s therapeutic outcomes in preclinical models of schizophrenia. Method: Following sub-chronic (daily for 7 days) administration of PAOPA, we assessed levels of dopamine D2 receptors, receptor kinases (GRK2 (G protein-coupled receptor kinase 2) and Arrestin-3), and phosphorylated mitogenactivated protein kinase (MAPKs), namely, extracellular signal-regulated kinases (ERK1/2) in the hippocampus, medial pre-frontal cortex, nucleus accumbens, pre-frontal cortex, and dorsal striatum via protein quantification. Results: Following 7 days of daily PAOPA treatment, we observed decreased GRK2 and increased dopamine D2 receptor expression in the dorsal striatum. These findings potentially underscore PAOPA’s therapeutic mechanism of action for the positive-like symptoms of schizophrenia in pre-clinical animal models. Additionally, we observed a decline in GRK2 in the hippocampus and an increase in phosphorylated ERK1 in the pre-frontal cortex, suggestive of a role for PAOPA in treating cognitive and/or affective dysfunction in pre-clinical models. Conclusion: While further studies are required to elucidate PAOPA’s mechanism of action, this study builds on prior investigations and develops an early framework to describe the therapeutic mechanism of action of PAOPA.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mario Paci ◽  
Giulio Di Cosmo ◽  
Mauro Gianni Perrucci ◽  
Francesca Ferri ◽  
Marcello Costantini

AbstractInhibitory control is the ability to suppress inappropriate movements and unwanted actions, allowing to regulate impulses and responses. This ability can be measured via the Stop Signal Task, which provides a temporal index of response inhibition, namely the stop signal reaction time (SSRT). At the neural level, Transcranial Magnetic Stimulation (TMS) allows to investigate motor inhibition within the primary motor cortex (M1), such as the cortical silent period (CSP) which is an index of GABAB-mediated intracortical inhibition within M1. Although there is strong evidence that intracortical inhibition varies during action stopping, it is still not clear whether differences in the neurophysiological markers of intracortical inhibition contribute to behavioral differences in actual inhibitory capacities. Hence, here we explored the relationship between intracortical inhibition within M1 and behavioral response inhibition. GABABergic-mediated inhibition in M1 was determined by the duration of CSP, while behavioral inhibition was assessed by the SSRT. We found a significant positive correlation between CSP’s duration and SSRT, namely that individuals with greater levels of GABABergic-mediated inhibition seem to perform overall worse in inhibiting behavioral responses. These results support the assumption that individual differences in intracortical inhibition are mirrored by individual differences in action stopping abilities.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Qing Ye ◽  
Xiao-Lei Yuan ◽  
Jie Zhou ◽  
Can-xing Yuan ◽  
Xu-ming Yang

This study was performed to observe the effects of Zishenpingchan granule on neurobehavioral manifestations and the activity and gene expression of striatal dopamine D1 and D2 receptors of rats with levodopa-induced dyskinesias (LID). We established normal control group, LID model group, and TCM intervention group. Each group received treatment for 4 weeks. Artificial neural network (ANN) was applied to excavate the main factor influencing variation in neurobehavioral manifestations of rats with LID. The results showed that overactivation in direct pathway mediated by dopamine D1 receptor and overinhibition in indirect pathway mediated by dopamine D2 receptor may be the main mechanism of LID. TCM increased the efficacy time of LD to ameliorate LID symptoms effectively mainly by upregulating dopamine D2 receptor gene expression.


Sign in / Sign up

Export Citation Format

Share Document