Components of Attentional Set-switching

Author(s):  
M. F. S. Rushworth ◽  
R. E. Passingham ◽  
A. C. Nobre

Abstract. A series of distinct event-related potentials (ERPs) have been recorded from the scalp of human subjects as they switch from one task to another. It is possible that task switching may depend on different mechanisms depending on whether the switch requires a change in attentional set, in other words the redirecting of attention to different aspects of a sensory stimulus, or whether it requires a change in intentional set, in others words a change in the way that responses are selected. To address this issue, the current study recorded ERPs while subjects switched between attentional sets and the results were compared with those of a previous investigation in which subjects switched between intentional sets. Subjects selected stimuli according to two conflicting attentional sets, each emphasizing one visual stimulus dimension (colour, shape). Pairs of stimuli, only one of which was to be attended, were presented for between eight and seventeen trials then either a switch or a stay cue was shown. The switch cue instructed subjects to switch from the current attentional set to the other set, while the stay cue instructed subjects to maintain the current set. Comparing ERPs time-locked to the switch and stay cues revealed neural correlates of the initiation of a task switch. Comparing the ERPs time locked to the first stimuli after either stay or switch cues identified neural correlates of the implementation of a task switch. A similar modulation over parietal electrodes was seen when subjects were switching between either attentional or intentional sets. While an intentional set switch began with a medial frontal modulation, attentional set switching began with a lateral frontal modulation. Implementing a new attentional set was associated with modulation of relatively early visual potentials, while implementing a new intentional set was associated with modulation of later response-related potentials. The results confirm that task switching consists of a number of constituent processes which may be taxed to different degrees depending on whether a task-switch paradigm requires subjects to change the way in which they select stimuli or responses.

2006 ◽  
Vol 18 (10) ◽  
pp. 1734-1748 ◽  
Author(s):  
Francisco Barcelo ◽  
Carles Escera ◽  
Maria J. Corral ◽  
Jose A. Periáñez

The abrupt onset of a novel event captures attention away from, and disrupts, ongoing task performance. Less obvious is that intentional task switching compares with novelty-induced behavioral distraction. Here we explore the hypothesis that intentional task switching and attentional capture by a novel distracter both activate a common neural network involved in processing contextual novelty [Barcelo, F., Periáñez, J. A., & Knight, R. T. Think differently: A brain orienting response to task novelty. NeuroReport, 13, 1887–1892, 2002.]. Event-related potentials were recorded in two task-cueing paradigms while 16 subjects sorted cards following either two (color or shape; two-task condition) or three (color, shape, or number; three-task condition) rules of action. Each card was preceded by a familiar tone cueing the subject either to switch or to repeat the previous rule. Novel sound distracters were interspersed in one of two blocks of trials in each condition. Both novel sounds and task-switch cues impaired responses to the following visual target. Novel sounds elicited novelty P3 potentials with their usual peak latency and frontal-central scalp distribution. Familiar tonal switch cues in the three- and two-task conditions elicited brain potentials with a similar latency and morphology as the novelty P3, but with relatively smaller amplitudes over frontal scalp regions. Covariance and principal component analyses revealed a sustained frontal negative potential that was distorting concurrent novelty P3 activity to the tonal switch cues. When this frontal negativity was statistically removed, P3 potentials to novel sounds and task-switch cues showed similar scalp topographies. The degree of activation in the novelty P3 network seemed to be a function of the information (entropy) conveyed by the eliciting stimulus for response selection, over and above its relative novelty, probability of occurrence, task relevance, or feedback value. We conclude that novelty P3 reflects transient activation in a neural network involved in updating task set information for goal-directed action selection and might thus constitute one key element in a central bottleneck for attentional control.


2013 ◽  
Vol 221 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Kerstin Jost ◽  
Wouter De Baene ◽  
Iring Koch ◽  
Marcel Brass

The role of cue processing has become a controversial topic in research on cognitive control using task-switching procedures. Some authors suggested a priming account to explain switch costs as a form of encoding benefit when the cue from the previous trial is repeated and hence challenged theories that attribute task-switch costs to task-set (re)configuration. A rich body of empirical evidence has evolved that indeed shows that cue-encoding repetition priming is an important component in task switching. However, these studies also demonstrate that there are usually substantial “true” task-switch costs. Here, we review this behavioral, electrophysiological, and brain imaging evidence. Moreover, we describe alternative approaches to the explicit task-cuing procedure, such as the usage of transition cues or the task-span procedure. In addition, we address issues related to the type of cue, such as cue transparency. We also discuss methodological and theoretical implications and argue that the explicit task-cuing procedure is suitable to address issues of cognitive control and task-set switching.


Author(s):  
Vesa Putkinen ◽  
Mari Tervaniemi

Studies conducted during the last three decades have identified numerous differences between musicians and non-musicians in neural correlates of sensory, motor, and higher-order cognitive functions. Research employing event-related potentials/fields has been particularly important in this framework. This chapter reviews the evidence that has emerged from these studies with emphasis on longitudinal studies comparing functional brain development in children taking music lessons and those engaged in non-musical activities. The literature provides empirical and theoretical grounds for concluding that musical training enhances sound encoding skills that are relevant for both music and speech processing. The question whether the benefits of musical training transfer to more distantly related cognitive functions remains controversial, however. Finally, it appears likely that training-induced plasticity alone does not account for the differences in brain function between musicians and non-musicians and, conversely, that predisposing factors also play a role.


1999 ◽  
Vol 22 (6) ◽  
pp. 991-1013 ◽  
Author(s):  
Harald Clahsen

Following much work in linguistic theory, it is hypothesized that the language faculty has a modular structure and consists of two basic components, a lexicon of (structured) entries and a computational system of combinatorial operations to form larger linguistic expressions from lexical entries. This target article provides evidence for the dual nature of the language faculty by describing recent results of a multidisciplinary investigation of German inflection. We have examined: (1) its linguistic representation, focussing on noun plurals and verb inflection (participles), (2) processes involved in the way adults produce and comprehend inflected words, (3) brain potentials generated during the processing of inflected words, and (4) the way children acquire and use inflection. It will be shown that the evidence from all these sources converges and supports the distinction between lexical entries and combinatorial operations.Our experimental results indicate that adults have access to two distinct processing routes, one accessing (irregularly) inflected entries from the mental lexicon and another involving morphological decomposition of (regularly) inflected words into stem+affix representations. These two processing routes correspond to the dual structure of the linguistic system. Results from event-related potentials confirm this linguistic distinction at the level of brain structures. In children's language, we have also found these two processes to be clearly dissociated; regular and irregular inflection are used under different circumstances, and the constraints under which children apply them are identical to those of the adult linguistic system.Our findings will be explained in terms of a linguistic model that maintains the distinction between the lexicon and the computational system but replaces the traditional view of the lexicon as a simple list of idiosyncrasies with the notion of internally structured lexical representations.


2001 ◽  
Vol 311 (3) ◽  
pp. 198-202 ◽  
Author(s):  
Shu Omoto ◽  
Yoshiyuki Kuroiwa ◽  
Mei Li ◽  
Hiroshi Doi ◽  
Megumi Shimamura ◽  
...  

2008 ◽  
Vol 20 (2) ◽  
pp. 255-267 ◽  
Author(s):  
Duncan E. Astle ◽  
G. M. Jackson ◽  
R. Swainson

The ability to change our behavior is one that we frequently exert, although determining the mechanisms by which we do so is far from trivial. Task switching is a useful experimental paradigm for studying cognitive control functions. Switching between tasks is associated with a decrement in performance, or “switch-cost,” relative to repeating the same task. We have previously demonstrated that this cost is dependent on switching from performing one task to performing another; changing only our intended performance does not elicit the same performance deficit. Using event-related potentials (ERPs), we dissociated two electrophysiological indices mirroring this behavioral distinction [Astle, D. E., Jackson, G. M., & Swainson, R. Dissociating neural indices of dynamic cognitive control in advance task-set preparation: An ERP study of task switching. Brain Res, 1125, 94–103, 2006]. However, what was unclear were the specific aspects of performance that were critical for triggering the neural mechanisms associated specifically with switching from a previously performed task. Two candidate aspects were: (i) that performance required a physical response and (ii) that the two tasks shared their responses (they had bivalent response mappings). The present study therefore compared three separate groups to explore the effects of these different aspects of performance. Each group completed the same basic task-switching paradigm, but with either an overt response or covert response, and either switching between tasks that shared their responses (bivalent response mappings) or had separate responses (univalent response mappings). When comparing precue-locked ERPs, we observed three separable components: one common to all three groups, one which primarily dissociated overt from covert responding, and one which primarily dissociated bivalent from univalent responding. We therefore concluded that changing our behavior engages at least three dissociable mechanisms. Interestingly, in the overt conditions, residual switch-costs were absent; in addition, therefore, we concluded that it is possible to engage cognitive control in advance, such that the new behavior is as efficient as were the subject to have repeated the old behavior.


2009 ◽  
Vol 21 (7) ◽  
pp. 1435-1446 ◽  
Author(s):  
Dominique Lamy ◽  
Moti Salti ◽  
Yair Bar-Haim

The aim of the present study was to dissociate the ERP (Event Related Potentials) correlates of subjective awareness from those of unconscious perception. In a backward masking paradigm, participants first produced a forced-choice response to the location of a liminal target presented for an individually calibrated duration, and then reported on their subjective awareness of the target's presence. We recorded (Event-Related Potentials) ERPs and compared the ERP waves when observers reported being aware vs. unaware of the target but localized it correctly, thereby isolating the neural correlates of subjective awareness while controlling for differences in objective performance. In addition, we compared the ERPs when participants were subjectively unaware of the target's presence and localized it correctly versus incorrectly, thereby isolating the neural correlates of unconscious perception. All conditions involved stimuli that were physically identical and were presented for the same duration. Both behavioral measures were associated with modulation of the amplitude of the P3 component of the ERP. Importantly, this modulation was widely spread across all scalp locations for subjective awareness, but was restricted to the parietal electrodes for unconscious perception. These results indicate that liminal stimuli that do not affect performance undergo considerable processing and that subjective awareness is associated with a late wave of activation with widely distributed topography.


Sign in / Sign up

Export Citation Format

Share Document