Urban climate, weather and sustainability

Author(s):  
Gerald Mills
Keyword(s):  
Author(s):  
Yuuri NARITA ◽  
Alvin C. G. VARQUEZ ◽  
Makoto NAKAYOSHI ◽  
Manabu KANDA

Author(s):  
Philip James

Elements of the physical aspects of urban environments determine which micro-organisms, plants, and animals live in urban environments. In this chapter, climate, air, water, soil, noise, and light are discussed. Urban environments are affected by the climate of the region in which they are located, and in turn and create their own, distinctive urban climate. Air, water, and soil are all affected by urbanization. Pollution of these elements is common. High noise levels and artificial light at night (ALAN—a new phenomenon) are both strongly associated with urban environments. Details of both are discussed. The discussion in this chapter provides a foundation for further exploration of the diversity of life in urban environments and for later exploration of how organisms adapt to urban living, which will be discussed in Parts II and III.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 546
Author(s):  
Andreas Matzarakis

In the era of climate change, before developing and establishing mitigation and adaptation measures that counteract urban heat island (UHI) effects [...]


2021 ◽  
Vol 13 (11) ◽  
pp. 5918
Author(s):  
Giacomo Chiesa ◽  
Yingyue Li

Urban heat island and urban-driven climate variations are recognized issues and may considerably affect the local climatic potential of free-running technologies. Nevertheless, green design and bioclimatic early-design analyses are generally based on typical rural climate data, without including urban effects. This paper aims to define a simple approach to considering urban shapes and expected effects on local bioclimatic potential indicators to support early-design choices. Furthermore, the proposed approach is based on simplifying urban shapes to simplify analyses in early-design phases. The proposed approach was applied to a sample location (Turin, temperate climate) and five other climate conditions representative of Eurasian climates. The results show that the inclusion of the urban climate dimension considerably reduced rural HDD (heating degree-days) from 10% to 30% and increased CDD (cooling degree-days) from 70% to 95%. The results reveal the importance of including the urban climate dimension in early-design phases, such as building programming in which specific design actions are not yet defined, to support the correct definition of early-design bioclimatic analyses.


Urban Forum ◽  
2021 ◽  
Author(s):  
Alexandra Panman ◽  
Ian Madison ◽  
Nyambiri Nanai Kimacha ◽  
Jean-Benoît Falisse

AbstractThis paper explores the role of savings groups in resilience to urban climate-related disasters. Savings groups are a rapidly growing phenomenon in Africa. They are decentralized, non-institutional groups that provide millions of people excluded from the formal banking sector with a trusted, accessible, and relatively simple source of microfinance. Yet there is little work on the impacts of savings groups on resilience to disasters. In this paper, we use a combination of quantitative and qualitative evidence from Dar es Salaam (Tanzania) to shed new light on the role that savings groups play in helping households cope with climate-related shocks. Drawing on new data, we show that approximately one-quarter of households have at least one member in a group, and that these households recover from flood events faster than those who do not. We further argue that the structure of savings groups allows for considerable group oversight, reducing the high costs of monitoring and sanctioning that often undermine cooperative engagement in urban areas. This makes the savings group model a uniquely flexible form of financing that is well adapted to helping households cope with shocks such as repeated flooding. In addition to this, we posit that they may provide a foundation for community initiatives focusing on preventative action.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 232
Author(s):  
Juan Manuel Medina ◽  
Carolina M. Rodriguez ◽  
Maria Camila Coronado ◽  
Lina Maria Garcia

The analysis of thermal comfort in buildings, energy consumption, and occupant satisfaction is crucial to influencing the architectural design methodologies of the future. However, research in these fields in developing countries is sectorised. Most times, the standards to study and assess thermal comfort such as ASHRAE Standard 55, EN 15251, and ISO 7730 are insufficient and not appropriate for the geographical areas of application. This article presents a scoping review of published work in Colombia, as a representative case study, to highlight the state-of-the-art, research trends, gaps, and potential areas for further development. It examines the amount, origin, extent, and content of research and peer-reviewed documentation over the last decades. The findings allow new insights regarding the preferred models and the evaluation tools that have been used to date and that are recommended to use in the future. It also includes additional information regarding the most and least studied regions, cities, and climates in the country. This work could be of interest for the academic community and policymakers in the areas related to indoor and urban climate management and energy efficiency.


2020 ◽  
Vol 45 (1) ◽  
pp. 411-444 ◽  
Author(s):  
Valéry Masson ◽  
Aude Lemonsu ◽  
Julia Hidalgo ◽  
James Voogt

Cities are particularly vulnerable to extreme weather episodes, which are expected to increase with climate change. Cities also influence their own local climate, for example, through the relative warming known as the urban heat island (UHI) effect. This review discusses urban climate features (even in complex terrain) and processes. We then present state-of-the-art methodologies on the generalization of a common urban neighborhood classification for UHI studies, as well as recent developments in observation systems and crowdsourcing approaches. We discuss new modeling paradigms pertinent to climate impact studies, with a focus on building energetics and urban vegetation. In combination with regional climate modeling, new methods benefit the variety of climate scenarios and models to provide pertinent information at urban scale. Finally, this article presents how recent research in urban climatology contributes to the global agenda on cities and climate change.


Sign in / Sign up

Export Citation Format

Share Document