scholarly journals Changes in measured lightning flash count and return stroke peak current after the 1994 U.S. National Lightning Detection Network upgrade: 1. Observations

1999 ◽  
Vol 104 (D2) ◽  
pp. 2151-2157 ◽  
Author(s):  
Robert S. Wacker ◽  
Richard E. Orville
2010 ◽  
Vol 138 (9) ◽  
pp. 3623-3633 ◽  
Author(s):  
Scott D. Rudlosky ◽  
Henry E. Fuelberg

Abstract The National Lightning Detection Network (NLDN) underwent a major upgrade during 2002–03 that increased its sensitivity and improved its performance. It is important to examine cloud-to-ground (CG) lightning distributions before and after this upgrade because CG characteristics depend on both measurement capabilities and meteorological variability. This study compares preupgrade (1996–99, 2001) and postupgrade (2004–09) CG distributions over the contiguous United States to examine the influence of the recent upgrade and to provide baseline postupgrade averages. Increased sensitivity explains most of the differences in the pre- and postupgrade distributions, including a general increase in total CG and positive CG (+CG) flash densities. The increase in +CG occurs despite the use of a greater weak +CG threshold for removing ambiguous +CG reports (post 15 kA versus pre 10 kA). Conversely, the average +CG percentage decreased from 10.61% to 8.65% following the upgrade. The average +CG (−CG) multiplicity increased from 1.10 (2.05) before to 1.54 (2.41) after the upgrade. Since true +CG flashes rarely contain more than one return stroke, explanations for the greater than unity +CG multiplicities remain unclear. Postupgrade results indicate that regions with mostly weak peak current +CG flashes now exhibit greater average +CG multiplicities, whereas regions with mainly strong +CG flashes now exhibit smaller average +CG multiplicities. The combination of NLDN performance, meteorological conditions, and physical differences in first −CG return strokes over saltwater produce maxima in −CG multiplicity and peak current over the coastal waters of the southeast United States.


2021 ◽  
Author(s):  
Savdulla Kazazi

The North American Lightning Detection Network (NALDN) has been providing lightning data since 1998. Important applications, such as detection of lightning-caused forest fires, power line fault locations and aviation safety procedures, have triggered a number of hardware and software upgrades for improving the network performance characteristics, including its detection efficiency and location accuracy. The NALDN performance characteristics are here evaluated based on the lightning currents measured at the CN Tower during three major storms (2005, 2011 and 2014). Each of these three storms followed one of the network’s substantial upgrades that took place in 2003-2004, 2010-2011 and 2013-2014. The major contribution of this extensive investigation is the determination of the network’s performance characteristics following each of the three major upgrades, which is expected to lead to additional upgrades. Since 1990, the lightning current derivatives of return strokes have been measured at the CN Tower. Its 553-m height has allowed the recording of the current derivative signals of many hundreds of return strokes. Also, imaging systems have been used to record trajectories of flashes to the tower. The evaluated performance characteristics of the network include return-stroke detection efficiency, location accuracy, and return-stroke polarity and peak current estimation. The 2013 NALDN deployment of LS7002 digital sensors with enhanced embedded software has substantially improved the sensitivity of the sensors leading to a greater return-stroke detection efficiency. Furthermore, the 2014 total lightning processor (TLP100) –designed with new algorithm - provides smaller time-of-arrival errors, leading to better location accuracy. Based on the 2014 storm evaluation, the numbers and polarities of NALDN-detected return strokes were perfectly matched with those recorded at the tower. Furthermore, based on the 2014 storm evaluation, the NALDN is found, as expected, to overestimate the current peak measured at the tower by a factor of 3.89, which is due to the field enhancement effect resulting from the high-speed of propagation of the current within the tall tower. The presented analysis shows that the latest NALDN upgrades (2013-2014), following the 2003-2004 and 2010-2011 upgrades, have substantially improved the NALDN performance characteristics, especially in terms of stroke-detection efficiency and location accuracy. Keywords: Tall-structure lightning; lightning detection; detection efficiency; location accuracy; peak current estimation.


2021 ◽  
Author(s):  
Savdulla Kazazi

The North American Lightning Detection Network (NALDN) has been providing lightning data since 1998. Important applications, such as detection of lightning-caused forest fires, power line fault locations and aviation safety procedures, have triggered a number of hardware and software upgrades for improving the network performance characteristics, including its detection efficiency and location accuracy. The NALDN performance characteristics are here evaluated based on the lightning currents measured at the CN Tower during three major storms (2005, 2011 and 2014). Each of these three storms followed one of the network’s substantial upgrades that took place in 2003-2004, 2010-2011 and 2013-2014. The major contribution of this extensive investigation is the determination of the network’s performance characteristics following each of the three major upgrades, which is expected to lead to additional upgrades. Since 1990, the lightning current derivatives of return strokes have been measured at the CN Tower. Its 553-m height has allowed the recording of the current derivative signals of many hundreds of return strokes. Also, imaging systems have been used to record trajectories of flashes to the tower. The evaluated performance characteristics of the network include return-stroke detection efficiency, location accuracy, and return-stroke polarity and peak current estimation. The 2013 NALDN deployment of LS7002 digital sensors with enhanced embedded software has substantially improved the sensitivity of the sensors leading to a greater return-stroke detection efficiency. Furthermore, the 2014 total lightning processor (TLP100) –designed with new algorithm - provides smaller time-of-arrival errors, leading to better location accuracy. Based on the 2014 storm evaluation, the numbers and polarities of NALDN-detected return strokes were perfectly matched with those recorded at the tower. Furthermore, based on the 2014 storm evaluation, the NALDN is found, as expected, to overestimate the current peak measured at the tower by a factor of 3.89, which is due to the field enhancement effect resulting from the high-speed of propagation of the current within the tall tower. The presented analysis shows that the latest NALDN upgrades (2013-2014), following the 2003-2004 and 2010-2011 upgrades, have substantially improved the NALDN performance characteristics, especially in terms of stroke-detection efficiency and location accuracy. Keywords: Tall-structure lightning; lightning detection; detection efficiency; location accuracy; peak current estimation.


Author(s):  
Ahmad Idil Abd Rahman ◽  
◽  
Muhammad Akmal Bahari ◽  
Zikri Abadi Baharudin ◽  
◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fukun Wang ◽  
Jianguo Wang ◽  
Li Cai ◽  
Rui Su ◽  
Wenhan Ding ◽  
...  

AbstractTwo special cases of dart leader propagation were observed by the high-speed camera in the leader/return stroke sequences of a classical triggered lightning flash and an altitude-triggered lightning flash, respectively. Different from most of the subsequent return strokes preceded by only one leader, the return stroke in each case was preceded by two leaders occurring successively and competing in the same channel, which herein is named leader-chasing behavior. In one case, the polarity of the latter leader was opposite to that of the former leader and these two combined together to form a new leader, which shared the same polarity with the former leader. In the other case, the latter leader shared the same polarity with the former leader and disappeared after catching up with the former leader. The propagation of the former leader in this case seems not to be significantly influenced by the existence of the latter leader.


2018 ◽  
Vol 197 ◽  
pp. 11001
Author(s):  
Aristo Adi Kusuma ◽  
Putu Agus Aditya Pramana ◽  
Brian Bramantyo S.D.A. Harsono ◽  
Buyung Sofiarto Munir

Based on Java-Bali grid disturbance data, the 66kV transmission lines that is close to or intersect with 150kV or 500kV transmission line is often experienced earth fault due to insulator flashover. The insulator flashover can be caused by indirect lightning strike since lightning strikes tend to strike higher structure. Therefore, this paper will determine the effect of indirect lightning strike on 150kV or 500kV transmission line to 66kV transmission line by modeling and simulation using application of transient analysis. Variation of lightning peak current magnitude and gap between 66kV transmission line and transmission line with higher voltage is performed during simulation. The range of peak current magnitude follows the data from lightning detection systems, while the value of gap follows the data from actual condition. It is found that higher current peak and closer gap will cause higher transient overvoltage on insulator of 66kV transmission line thus insulator flashover may occur more frequent. Addition of earth wire on 66kV transmission line and gap between each transmission by organizing the sag of conductor can be performed to minimize the insulator flashover.


Author(s):  
Muhammad Akmal Bahari ◽  
Zikri Abadi Baharudin ◽  
Tole Sutikno ◽  
Ahmad Idil Abdul Rahman ◽  
Mohd Ariff Mat Hanafiah ◽  
...  

The mechanism on how lightning detection system (LDS) operated never been exposed by manufacturer since it was confidential. This scenario motivated the authors to explore the issue above by using MATLAB to develop autoanalysis software based on the feature extraction. This extraction is intended for recognizing the parameters in the first return stroke, and compare the measurement between the autoanalysis software and the manual analysis. This paper is a modification based on a previous work regarding autoanalysis of zero-crossing time and initial peak of return stroke using features extraction programming technique. Further, the parameter on rising time of initial peak is added in this autoanalysis programming technique. Finally, the manual analysis using WaveStudio (LeCroy product) of those two lightning parameters is compared with autoanalysis software. This study found that the autoanalysis produce similar result with the manual analysis, hence proved the reliability of this software.


Sign in / Sign up

Export Citation Format

Share Document