current magnitude
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 0)

H-INDEX

14
(FIVE YEARS 0)

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3519 ◽  
Author(s):  
Atul Kulshrestha ◽  
Om Prakash Mahela ◽  
Mukesh Kumar Gupta ◽  
Neeraj Gupta ◽  
Nilesh Patel ◽  
...  

Penetration level of solar photovoltaic (PV) energy in the utility network is steadily increasing. This changes the fault level and causes protection problems. Furthermore, multi-tapped structure of distribution network deployed to integrate solar PV energy to the grid and supplying loads at the same time also raised the protection challenges. Hence, this manuscript is aimed at introducing an algorithm to identify and classify the faults incident on the network of utilities where penetration level of the solar PV energy is high. This fault recognition algorithm is implemented in four steps: (1) calculation of Stockwell transform-based fault index (STFI) (2) calculation of Wigner distribution function-based fault index (WDFI) (3) calculation of combined fault index (CFI) by multiplying STFI and WDFI (4) calculation of index for ground fault (IGF) used to recognize the involvement of ground in a fault event. The STFI has the merits that its performance is least affected by the noise associated with the current signals and it is effective in identification of the waveform distortions. The WDFI employs energy density of the current signals for estimation of the faults and takes care of the current magnitude. Hence, CFI has the merit that it considers the current magnitude as well as waveform distortion for recognition of the faults. The classification of faults is achieved using the number of faulty phases. An index for ground fault (IGF) based on currents of zero sequence is proposed to classify the two phase faults with and without the ground engagement. Investigated faults include phase to ground, two phases fault without involving ground, two phases fault involving ground and three phase fault. Fault recognition algorithm is tested for fault recognition with the presence of noise, various angles of fault incidence, different impedances involved during faulty event, hybrid lines consisting of overhead line (OHL) and underground cable (UGC) sections, and location of faults on all nodes of the test grid. Fault recognition algorithm is also tested to discriminate the transients due to switching operations of feeders, loads and capacitor banks from the faulty transients. Performance of the fault recognition algorithm is compared with the algorithms based on discrete wavelet transform (DWT), Stockwell transform (ST) and hybrid combination of alienation coefficient and Wigner distribution function (WDF). Effectiveness of the fault recognition algorithm is established using a detailed study on the IEEE-13 nodes test feeder modified to incorporate solar PV plant of capacity 1 MW in MATLAB/Simulink. Algorithm is also validated on practical utility grid of Rajasthan State of India.





2019 ◽  
Vol 173 ◽  
pp. 100-111
Author(s):  
M. Coppo ◽  
F. Bignucolo ◽  
R. Turri ◽  
H. Griffiths ◽  
N. Harid ◽  
...  


Hippocampus ◽  
2019 ◽  
Vol 29 (12) ◽  
pp. 1224-1237 ◽  
Author(s):  
Markus M. Hilscher ◽  
Ingrid Nogueira ◽  
Sanja Mikulovic ◽  
Klas Kullander ◽  
Richardson N. Leão ◽  
...  


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1384 ◽  
Author(s):  
Martin Yahya Surya ◽  
Zhiguo He ◽  
Yuezhang Xia ◽  
Li Li

Jakarta city has been vulnerable to sea level rise and flooding for many years. A Giant Seawall (GSW) was proposed in Jakarta Bay to protect the city. The impacts of sea level rise and river discharge on the tidal dynamics in Jakarta Bay and flooding areas in Jakarta city were investigated using the finite-volume coastal ocean model (FVCOM). Model results showed that the bay is diurnally dominated by the K1 tidal component. The diurnal tides propagate westward, while the semidiurnal tides propagate eastward in the bay. The rise of sea level increases the diurnal tidal component and the inundation areas due to the increased tidal forcing: when considering a sea level rise of 0.6 m, the K1 amplitude increases by ~1% (0.25 cm) near the coastline and the current magnitude increases by 16.6% (0.05 m/s). The inundation area increases with the sea level rise in the low land elevation areas occurring near the coastlines: the inundation area increased by 29.68 km2 (7.1%) with a sea level rise of 0.6 m. The increase of river discharge amplified the diurnal tidal component as well as the inundation areas at the river mouth due to increased fluvial forcing: if 10 times the mean river discharge occurs, the K1 amplitude increases by ~1% (0.25 cm) and the current magnitude increases by 100% (0.4 m/s), and the inundation areas increase by 26.61 km2 (6.2%). The K1 tidal phase remains almost unchanged under both the sea level rise and river discharge conditions. The combined increase of sea level rise and the river discharge amplifies the inundation areas and the tidal currents due to increased tidal and fluvial forcing. The construction of GSW would decrease the tidal prism and dissipation effects of the bay, thus slightly increasing the K1 amplitude of the tidal level: by less than 1% (0.2 cm). There would be no significant change of phase lag for the K1 component. Although this study is site specific, the findings could be applied more widely to any open-type bays.



Author(s):  
Bharath Kumar Sugumar ◽  
Sujatha Balaraman

Faults in power systems are classified as internal and external faults. Faults within the zone are termed as internal faults whereas; the faults outside the Zone are called as external faults. Ideally, a relay outward after the protection of a zone should operate only for internal faults. It should restrain from operating for external faults or through faults. In this project, the busbar protection using differential protection scheme has been investigated for internal and external faults. The current magnitude from the Current Transformer is compared with a preset value and when the current exceeds the preset value, and then a trip command is given to associated circuit breaker. In this work, an algorithm has been developed to improve the selectivity of the relay and the same is tested on three-phase bus bar having two incoming lines and three outgoing lines at different fault levels and the results are verified for internal and external faults. The entire algorithm is programmed and graphical views of relay performance are verified using the MP LAB platform.



2019 ◽  
Vol 2 (1) ◽  
pp. 126-144 ◽  
Author(s):  
Jiyun Zhang ◽  
Dehai Song ◽  
Wen Wu ◽  
Xianwen Bao

Using numerical modelling, we study changes in tidal dynamics in Daya Bay (DYB) between 1989 and 2014. During this period, a total water area of 30 km2 was reclaimed and the average water depth increased by 38 cm. As DYB is a sexta-diurnal tidal resonant bay, the sexta-diurnal tides respond differently to the coastline and bathymetry changes than other tides. Taking K1, M2, M4, and M6 as examples, model results show a decrease in tidal elevation amplitude, tidal current magnitude, and tidal energy flux for K1, M2, and M4 tides. For the M6 tide, however, the model predicted an increase in tidal elevation amplitude, tidal current magnitude in some parts of the bay, and the tidal energy flowing into the bay. Land reclamation leads to the enhancement of sexta-diurnal tidal resonance and thus the magnitude of the M6 tide. Furthermore, due to the magnification of M6, tidal duration asymmetry in DYB changed from ebb-dominance to flood-dominance, and water exchange became much more active. Therefore, owing to the sexta-diurnal tidal resonance, the impact of human activities on tidal dynamics in DYB is different from that in previously reported semi-enclosed bays where large-scale land reclamation has been carried out.



2018 ◽  
Vol 8 (10) ◽  
pp. 1834 ◽  
Author(s):  
Ho-Yun Lee ◽  
Mansoor Asif ◽  
Kyu-Hoon Park ◽  
Bang-Wook Lee

The eventual goal of high-voltage direct-voltage (HVDC) systems is to implement HVDC grids. The modular multilevel converter (MMC) has been identified as the best candidate for the realization of an HVDC grid by eliminating the shortcomings of conventional voltage source converter (VSC) technology. The related research has focused on efficient control schemes, new MMC topologies, and operational characteristics of an MMC in a DC grid, but there is little understanding about the fault handling capability of two mainstream MMC topologies, i.e., half bridge (HB) and full bridge (FB) MMCs in combination with an adequate protection device. Contrary to the existing research where the fault location is usually fixed (center of the line), this paper considered a variable fault location on the DC line, so as to compare the fault interruption time and maximum fault current magnitude. From the point of view of fault interruption, AC and DC side transient analyses were performed for both MMC topologies to suggest the appropriate topology. The simulation result confirmed that the fault handling performance of an HB-MMC with a DC circuit breaker is superior due to the smaller fault current magnitude, faster interruption time, lower overvoltage magnitude, and lesser stresses on the insulation of the DC grid.



2018 ◽  
Vol 31 (3) ◽  
pp. 035002 ◽  
Author(s):  
Zhenan Jiang ◽  
Wei Zhou ◽  
Quan Li ◽  
Min Yao ◽  
Jin Fang ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document