scholarly journals Comparison of simultaneous rain drop size distributions estimated from two surface disdrometers and a UHF profiler

2000 ◽  
Vol 27 (12) ◽  
pp. 1763-1766 ◽  
Author(s):  
Christopher R. Williams ◽  
Anton Kruger ◽  
Kenneth S. Gage ◽  
Ali Tokay ◽  
Robert Cifelli ◽  
...  
2019 ◽  
Vol 147 (8) ◽  
pp. 2811-2825 ◽  
Author(s):  
Céline Planche ◽  
Frédéric Tridon ◽  
Sandra Banson ◽  
Gregory Thompson ◽  
Marie Monier ◽  
...  

Abstract A comparison between retrieved properties of the rain drop size distributions (DSDs) from multifrequency cloud radar observations and WRF Model results using either the Morrison or the Thompson bulk microphysics scheme is performed in order to evaluate the model’s ability to predict the rain microphysics. This comparison reveals discrepancies in the vertical profile of the rain DSDs for the stratiform region of the squall-line system observed on 12 June 2011 over Oklahoma. Based on numerical sensitivity analyses, this study addresses the bias at the top of the rain layer and the vertical evolution of the DSD properties (i.e., of Dm and N0*). In this way, the Thompson scheme is used to explore the sensitivity to the melting process. Moreover, using the Thompson and Morrison schemes, the sensitivity of the DSD vertical evolution to different breakup and self-collection parameterizations is studied. Results show that the DSDs are strongly dependent on the representation of the melting process in the Thompson scheme. In the Morrison scheme, the simulations with more efficient breakup reproduce the DSD properties with better fidelity. This study highlights how the inaccuracies in simulated Dm and N0* for both microphysics schemes can impact the evaporation rate, which is systematically underestimated in the model.


2011 ◽  
Vol 68 (9) ◽  
pp. 1902-1910 ◽  
Author(s):  
P. T. May ◽  
V. N. Bringi ◽  
M. Thurai

Abstract Rain drop size distributions retrieved from polarimetric radar measurements over regularly occurring thunderstorms over the islands north of Darwin, Australia, are used to test if aerosol contributions to the probability distributions of the drop size distribution parameters (median volume diameter and normalized intercept parameter) are detectable. The observations reported herein are such that differences in cloud properties arising from thermodynamic differences are minimized but even so may be a factor. However, there is a clear signature that high aerosol concentrations are correlated with smaller number concentrations and larger drops. This may be associated with enhanced ice multiplication processes for low aerosol concentration storms or other processes such as invigoration of the updrafts.


Sign in / Sign up

Export Citation Format

Share Document