DROP-SIZE DISTRIBUTIONS AND HEAT TRANSFER IN DROPWISE CONDENSATION - CONDENSATION COEFFICIENT OF WATER AT LOW PRESSURES

Author(s):  
Hiroaki Tanaka ◽  
Shigeo Hatamiya
1975 ◽  
Vol 97 (3) ◽  
pp. 341-346 ◽  
Author(s):  
H. Tanaka

Instantaneous drop-size distributions were measured during transient dropwise condensation onto an initially bare surface which forms the constituent process of the so-called steady dropwise condensation on a vertical surface. The measured distributions agreed satisfactorily with the prediction from the previous author’s theory.


2011 ◽  
Vol 228-229 ◽  
pp. 869-873
Author(s):  
Yun Fu Chen

For finding influence of the surface wettability on dropwise condensation heat transfer, a model for dropwise condensation heat transfer has been established based on the drop size distributions and the heat transfer rate through a single drop with considering influence of contact angle to heat transfer. It has been shown based on the proposed model that up to a drop radius of 5μm, the rate of decrease in the drop population density is not as steep as the rate for a drop radius greater than 10μm, because coalescence between drops starts taking place. Varying the contact angle changes the drop distribution; higher the contact angle, lower the departing droplet size and large number density of small droplets. Heat flux first increases and then decreases with increasing contact angle under the temperature difference condition.


AIChE Journal ◽  
1971 ◽  
Vol 17 (3) ◽  
pp. 575-584 ◽  
Author(s):  
K. Y. Kim ◽  
W. R. Marshall

2015 ◽  
Vol 17 (1) ◽  
pp. 53-72 ◽  
Author(s):  
Katja Friedrich ◽  
Evan A. Kalina ◽  
Joshua Aikins ◽  
Matthias Steiner ◽  
David Gochis ◽  
...  

Abstract Drop size distributions observed by four Particle Size Velocity (PARSIVEL) disdrometers during the 2013 Great Colorado Flood are used to diagnose rain characteristics during intensive rainfall episodes. The analysis focuses on 30 h of intense rainfall in the vicinity of Boulder, Colorado, from 2200 UTC 11 September to 0400 UTC 13 September 2013. Rainfall rates R, median volume diameters D0, reflectivity Z, drop size distributions (DSDs), and gamma DSD parameters were derived and compared between the foothills and adjacent plains locations. Rainfall throughout the entire event was characterized by a large number of small- to medium-sized raindrops (diameters smaller than 1.5 mm) resulting in small values of Z (<40 dBZ), differential reflectivity Zdr (<1.3 dB), specific differential phase Kdp (<1° km−1), and D0 (<1 mm). In addition, high liquid water content was present throughout the entire event. Raindrops observed in the plains were generally larger than those in the foothills. DSDs observed in the foothills were characterized by a large concentration of small-sized drops (d < 1 mm). Heavy rainfall rates with slightly larger drops were observed during the first intense rainfall episode (0000–0800 UTC 12 September) and were associated with areas of enhanced low-level convergence and vertical velocity according to the wind fields derived from the Variational Doppler Radar Analysis System. The disdrometer-derived Z–R relationships reflect how unusual the DSDs were during the 2013 Great Colorado Flood. As a result, Z–R relations commonly used by the operational NEXRAD strongly underestimated rainfall rates by up to 43%.


2005 ◽  
Vol 44 (7) ◽  
pp. 1146-1151 ◽  
Author(s):  
Axel Seifert

Abstract The relation between the slope and shape parameters of the raindrop size distribution parameterized by a gamma distribution is examined. The comparison of results of a simple rain shaft model with an empirical relation based on disdrometer measurements at the surface shows very good agreement, but a more detailed discussion reveals some difficulties—for example, deviations from the gamma shape and the overestimation of collisional breakup.


2013 ◽  
Vol 644 ◽  
pp. 203-206
Author(s):  
Hai Liang Cai ◽  
Bi Feng Song ◽  
Yang Pei ◽  
Shuai Shi

For making sure the dry bay ignition and fire, it’s necessary to calculate the number and the sizes of the droplets and determine the mass flow rate of the fuel induced by high-speed impact and penetration of a rigid projectile into fuel tank. An analytical model is founded and the method for calculating the initial leaking velocity of the fuel is determined. It gives the equation for calculating the drop size distributions of fuel and the Sauter mean diameter (SMD) of droplets, through the Maximum Entropy Theory and the conservation for mass. Using the Harmon’s equation for SMD,the fuel droplets SMD can be calculated. Results shows that the initial leaking velocity of the fuel is about linearly increasing with the velocity of the projectile, the SMD of fuel droplets increases with the hole size of the fuel tank which induced by the penetration of the projectile and linearly decreases with the velocity of the projectile. The results can be used for the ignition and fire analysis of the dry bay adjacent to fuel tanks.


Sign in / Sign up

Export Citation Format

Share Document