scholarly journals A three-dimensional hybrid code simulation of the December 1984 solar wind AMPTE release

1999 ◽  
Vol 26 (18) ◽  
pp. 2837-2840 ◽  
Author(s):  
P. A. Delamere ◽  
D. W. Swift ◽  
H. C. Stenbaek-Nielsen
2021 ◽  
Author(s):  
Emanuele Cazzola ◽  
Dominique Fontaine ◽  
Philippe Savoini

<p>This work will be giving new insights into the global Quasi-Perpendicular interaction effects of the Solar Wind with a realistic three-dimensional terrestrial-like curved Bow Shock (BS) by means of hybrid computer simulations.<br>The Bow-Shock profoundly changes its behavior for different incoming Solar Wind conditions. For Alfvénic Mach numbers greater than a specific threshold, the Bow-Shock shows an intense rippling phenomenon propagating along its surface, as well as the formation of a set of waves in the near-Earth flanks.<br>A similar rippling has been observed from different independent in-situ satellite crossings, as well as studied with ad-hoc computer simulations configured with 2D-planar shocks, conclusively confirming the highly kinetic nature of this phenomenon. Yet, the possible effects of a global three-dimensional curved interaction are still poorly described.<br>As such, we have performed a series of 3D simulations at different Alfvénic Mach numbers, different plasma beta - ratio between the thermal to the magnetic pressures - and different incoming Interplanetary Magnetic Field (IMF) configurations with the hybrid code LatHyS, which was already successfully used for similar past analyses.<br>Particularly, we have found that the ripples follow a pattern not directly driven by the IMF direction as initially expected, but rather a Nose-to-Flanks propagation with the rippling onset region  being significantly displaced from the nose position. Additionally, this phenomenon seems to be mainly confined to the plane on where the IMF direction lies, with the perpendicular cross-sections showing only a slight oscillation.<br>Finally, we have observes a significant ions acceleration in the local perpendicular directions along the flanks modulations, which is most likely related to the local IMF-BS normal fluctuations occurring in the ripples boundary.</p>


2018 ◽  
Vol 1031 ◽  
pp. 012002 ◽  
Author(s):  
L. Franci ◽  
P. Hellinger ◽  
M. Guarrasi ◽  
C. H. K. Chen ◽  
E. Papini ◽  
...  

2019 ◽  
Vol 85 (4) ◽  
Author(s):  
Benjamin D. G. Chandran ◽  
Jean C. Perez

We present three-dimensional direct numerical simulations and an analytic model of reflection-driven magnetohydrodynamic (MHD) turbulence in the solar wind. Our simulations describe transverse, non-compressive MHD fluctuations within a narrow magnetic flux tube that extends from the photosphere, through the chromosphere and corona and out to a heliocentric distance  $r$ of 21 solar radii  $(R_{\odot })$ . We launch outward-propagating ‘ $\boldsymbol{z}^{+}$ fluctuations’ into the simulation domain by imposing a randomly evolving photospheric velocity field. As these fluctuations propagate away from the Sun, they undergo partial reflection, producing inward-propagating ‘ $\boldsymbol{z}^{-}$ fluctuations’. Counter-propagating fluctuations subsequently interact, causing fluctuation energy to cascade to small scales and dissipate. Our analytic model incorporates dynamic alignment, allows for strongly or weakly turbulent nonlinear interactions and divides the $\boldsymbol{z}^{+}$ fluctuations into two populations with different characteristic radial correlation lengths. The inertial-range power spectra of $\boldsymbol{z}^{+}$ and $\boldsymbol{z}^{-}$ fluctuations in our simulations evolve toward a $k_{\bot }^{-3/2}$ scaling at $r>10R_{\odot }$ , where $k_{\bot }$ is the wave-vector component perpendicular to the background magnetic field. In two of our simulations, the $\boldsymbol{z}^{+}$ power spectra are much flatter between the coronal base and $r\simeq 4R_{\odot }$ . We argue that these spectral scalings are caused by: (i) high-pass filtering in the upper chromosphere; (ii) the anomalous coherence of inertial-range $\boldsymbol{z}^{-}$ fluctuations in a reference frame propagating outwards with the $\boldsymbol{z}^{+}$ fluctuations; and (iii) the change in the sign of the radial derivative of the Alfvén speed at $r=r_{\text{m}}\simeq 1.7R_{\odot }$ , which disrupts this anomalous coherence between $r=r_{\text{m}}$ and $r\simeq 2r_{\text{m}}$ . At $r>1.3R_{\odot }$ , the turbulent heating rate in our simulations is comparable to the turbulent heating rate in a previously developed solar-wind model that agreed with a number of observational constraints, consistent with the hypothesis that MHD turbulence accounts for much of the heating of the fast solar wind.


2009 ◽  
Vol 114 (A10) ◽  
pp. n/a-n/a ◽  
Author(s):  
R. Kataoka ◽  
T. Ebisuzaki ◽  
K. Kusano ◽  
D. Shiota ◽  
S. Inoue ◽  
...  

2013 ◽  
Vol 56 (11) ◽  
pp. 1864-1880 ◽  
Author(s):  
XueShang Feng ◽  
DingKun Zhong ◽  
ChangQing Xiang ◽  
Yao Zhang
Keyword(s):  

2001 ◽  
Vol 19 (10/12) ◽  
pp. 1303-1354 ◽  
Author(s):  
H. Rème ◽  
C. Aoustin ◽  
J. M. Bosqued ◽  
I. Dandouras ◽  
B. Lavraud ◽  
...  

Abstract. On board the four Cluster spacecraft, the Cluster Ion Spectrometry (CIS) experiment measures the full, three-dimensional ion distribution of the major magnetospheric ions (H+, He+, He++, and O+) from the thermal energies to about 40 keV/e. The experiment consists of two different instruments: a COmposition and DIstribution Function analyser (CIS1/CODIF), giving the mass per charge composition with medium (22.5°) angular resolution, and a Hot Ion Analyser (CIS2/HIA), which does not offer mass resolution but has a better angular resolution (5.6°) that is adequate for ion beam and solar wind measurements. Each analyser has two different sensitivities in order to increase the dynamic range. First tests of the instruments (commissioning activities) were achieved from early September 2000 to mid January 2001, and the operation phase began on 1 February 2001. In this paper, first results of the CIS instruments are presented showing the high level performances and capabilities of the instruments. Good examples of data were obtained in the central plasma sheet, magnetopause crossings, magnetosheath, solar wind and cusp measurements. Observations in the auroral regions could also be obtained with the Cluster spacecraft at radial distances of 4–6 Earth radii. These results show the tremendous interest of multispacecraft measurements with identical instruments and open a new area in magnetospheric and solar wind-magnetosphere interaction physics.Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; magnetopheric configuration and dynamics; solar wind - magnetosphere interactions)


2021 ◽  
Vol 921 (2) ◽  
pp. 139
Author(s):  
Yun Li ◽  
Haoyu Lu ◽  
Jinbin Cao ◽  
Shibang Li ◽  
Christian Mazelle ◽  
...  

Abstract Without the intrinsic magnetic field, the solar wind interaction with Mars can be significantly different from the interaction with Earth and other magnetized planets. In this paper, we investigate how a global configuration of the magnetic structures, consisting of the bow shock, the induced magnetosphere, and the magnetotail, is modulated by the interplanetary magnetic field (IMF) orientation. A 3D multispecies numerical model is established to simulate the interaction of solar wind with Mars under different IMF directions. The results show that the shock size including the subsolar distance and the terminator radius increases with Parker spiral angle, as is the same case with the magnetotail radius. The location and shape of the polarity reversal layer and inverse polarity reversal layer in the induced magnetotail are displaced to the y < 0 sector for a nonzero flow-aligned IMF component, consistent with previous analytical solutions and observations. The responses of the Martian global magnetic configuration to the different IMF directions suggest that the external magnetic field plays an important role in the solar wind interaction with unmagnetized planets.


Sign in / Sign up

Export Citation Format

Share Document