scholarly journals Characterization of in situ elastic properties of gas hydrate-bearing sediments on the Blake Ridge

1999 ◽  
Vol 104 (B8) ◽  
pp. 17781-17795 ◽  
Author(s):  
Gilles Guerin ◽  
David Goldberg ◽  
Aleksandr Meltser
2012 ◽  
Vol 446-449 ◽  
pp. 1396-1399
Author(s):  
Ling Dong Li ◽  
Yuan Fang Cheng ◽  
Xiao Jie Sun

As a kind of emerging energy with massive reserves, natural gas hydrates are becoming the hot spot of global research. The elastic properties of gas hydrate bearing sediments (HBS) are the fundamental parameters for gas hydrates exploration and resource evaluations. As the original coring in HBS is difficult and expensive, experimental method is important to study the problem. An acoustic wave in-situ measuring system for HBS was developed. Using the in-situ method, hydrate bearing rock samples of different hydrate saturation were synthesized, of which the supersonic wave measurement was carried out under different confining pressure. According to the elasticity theory, the dynamic elastic parameters were obtained using the measured ultrasonic wave velocity. The results show that compressional and shear waves increase with the confining pressure and hydrate saturation increasing, and so the dynamic elastic modulus is.


2014 ◽  
Vol 353 ◽  
pp. 99-107 ◽  
Author(s):  
Giuliana Panieri ◽  
Paul Aharon ◽  
Barun K. Sen Gupta ◽  
Angelo Camerlenghi ◽  
Francesc Palmer Ferrer ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3403 ◽  
Author(s):  
Burwicz ◽  
Rüpke

Marine sediments of the Blake Ridge province exhibit clearly defined geophysical indications for the presence of gas hydrates and a free gas phase. Despite being one of the world’s best-studied gas hydrate provinces and having been drilled during Ocean Drilling Program (ODP) Leg 164, discrepancies between previous model predictions and reported chemical profiles as well as hydrate concentrations result in uncertainty regarding methane sources and a possible co-existence between hydrates and free gas near the base of the gas hydrate stability zone (GHSZ). Here, by using a new multi-phase finite element (FE) numerical model, we investigate different scenarios of gas hydrate formation from both single and mixed methane sources (in-situ biogenic formation and a deep methane flux). Moreover, we explore the evolution of the GHSZ base for the past 10 Myr using reconstructed sedimentation rates and non-steady-state P-T solutions. We conclude that (1) the present-day base of the GHSZ predicted by our model is located at the depth of ~450 mbsf, thereby resolving a previously reported inconsistency between the location of the BSR at ODP Site 997 and the theoretical base of the GHSZ in the Blake Ridge region, (2) a single in-situ methane source results in a good fit between the simulated and measured geochemical profiles including the anaerobic oxidation of methane (AOM) zone, and (3) previously suggested 4 vol.%–7 vol.% gas hydrate concentrations would require a deep methane flux of ~170 mM (corresponds to the mass of methane flux of 1.6 × 10−11 kg s−1 m−2) in addition to methane generated in-situ by organic carbon (POC) degradation at the cost of deteriorating the fit between observed and modelled geochemical profiles.


2016 ◽  
Author(s):  
Kathleen Sell ◽  
Erik-H. Saenger ◽  
Andrzej Falenty ◽  
Marwen Chaouachi ◽  
David Haberthür ◽  
...  

Abstract. To date, very little is known about the distribution of gas hydrates in sedimentary matrices and the resulting matrix-pore network affecting the seismic properties at low hydrate concentration. Digital rock physics offers a unique solution to this issue yet requires good quality, high resolution 3D representations for the accurate modelling of petrophysical and transport properties. Although such models are readily available via in-situ synchrotron radiation X-ray tomography the analysis of such data asks for complex workflows and high computational power to maintain valuable results. Here, we present a best-practise procedure complementing data from Chaouachi et al. (Geochemistry, Geophysics, Geosystems 2015, 16 (6), 1711–1722) with data post-processing, including image enhancement and segmentation as well as numerical simulations in 3D using the derived results as a direct model input. The method presented opens a path to a model-free deduction of the properties of gas hydrate bearing sediments when aiming for in-situ experiments linked to synchrotron-based tomography and 3D modelling.


Solid Earth ◽  
2016 ◽  
Vol 7 (4) ◽  
pp. 1243-1258 ◽  
Author(s):  
Kathleen Sell ◽  
Erik H. Saenger ◽  
Andrzej Falenty ◽  
Marwen Chaouachi ◽  
David Haberthür ◽  
...  

Abstract. To date, very little is known about the distribution of natural gas hydrates in sedimentary matrices and its influence on the seismic properties of the host rock, in particular at low hydrate concentration. Digital rock physics offers a unique approach to this issue yet requires good quality, high-resolution 3-D representations for the accurate modeling of petrophysical and transport properties. Although such models are readily available via in situ synchrotron radiation X-ray tomography, the analysis of such data asks for complex workflows and high computational power to maintain valuable results. Here, we present a best-practice procedure complementing data from Chaouachi et al. (2015) with data post-processing, including image enhancement and segmentation as well as exemplary numerical simulations of an acoustic wave propagation in 3-D using the derived results. A combination of the tomography and 3-D modeling opens a path to a more reliable deduction of properties of gas hydrate-bearing sediments without a reliance on idealized and frequently imprecise models.


2019 ◽  
Vol 169 ◽  
pp. 154-164 ◽  
Author(s):  
Tuan Nguyen-Sy ◽  
Anh-Minh Tang ◽  
Quy-Dong To ◽  
Minh-Ngoc Vu

1986 ◽  
Vol 64 (9) ◽  
pp. 1184-1189 ◽  
Author(s):  
A. Biswas ◽  
T. Ahmed ◽  
K. W. Johnson ◽  
K. L. Telschow ◽  
J. C. Crelling ◽  
...  

The organic constituents that make up the heterogeneous coal mass are called macerals. Vitrinite and pseudovitrinite are two of the most abundantly occurring macerals in North American coals. Photoacoustic microscopy using piezoelectric detection offers a useful technique for probing the thermal-elastic properties of these coal macerals. The experimental and theoretical conditions under which photoacoustic microscopy can be used to characterize the in situ thermal-elastic properties of macerals, as a function of the percentage of carbon or "rank" of coal, are investigated in this paper. Existing piezoelectric photoacoustic theory has been applied to our sample–transducer configuration to arrive at an expression for the voltage measured from the piezoelectric transducer. The theory indicates that the photoacoustic signal is related to the following sample properties: coefficient of thermal expansion a, bulk modulus B, density ρ, and specific heat c. These properties are coupled together into a dimensionless parameter given by aB/ρc, to which the measured voltage is proportional. Some experimental results used to test the validity of the theoretical predictions are presented. Photoacoustic data gathered on 10 Appalachian Basin coals are plotted as a function of the coal rank. These results are shown to compare favourably with a calculated curve, constructed using independently measured values of a, B, ρ, and c.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. D263-D281 ◽  
Author(s):  
Adam M. Allan ◽  
Anthony C. Clark ◽  
Tiziana Vanorio ◽  
Waruntorn Kanitpanyacharoen ◽  
Hans-Rudolf Wenk

The evolution of the elastic properties of organic-rich shale as a function of thermal maturity remains poorly constrained. This understanding is pivotal to the characterization of source rocks and unconventional reservoirs. To better constrain the evolution of the elastic properties and microstructure of organic-rich shale, we have studied the acoustic velocities and elastic anisotropy of samples from two microstructurally different organic-rich shales before and after pyrolysis-induced thermal maturation. To more physically imitate in situ thermal maturation, we performed the pyrolysis experiments on intact core plugs under applied reservoir-magnitude confining pressures. Iterative characterization of the elastic properties of a clay-rich, laminar Barnett Shale sample documents the development of subparallel to bedding cracks by an increase in velocity sensitivity to pressure perpendicular to the bedding. These cracks, however, are not visible through time-lapse scanning electron microscope imaging, indicating either submicrometer crack apertures or predominant development within the core of the sample. At elevated confining pressures, in the absence of pore pressure, these induced cracks close, at which point, the sample is acoustically indistinguishable from the prepyrolysis sample. Conversely, a micritic Green River sample does not exhibit the formation of aligned compliant features. Rather, the sample exhibits a largely directionally independent decrease in velocity as load-bearing, pore-filling kerogen is removed from the sample. Due to the weak alignment of minerals, there is comparatively little intrinsic anisotropy; further, due to the relatively directionally independent evolution of velocity, the evolution of the anisotropy as a function of thermal maturity is not indicative of aligned compliant features. Our results have indicated that horizons of greater thermal maturity may be acoustically detectable in situ through increases in the elastic anisotropy of laminar shales or decreases in the acoustic velocities of nonlaminar shales, micritic rocks, or siltstones.


Sign in / Sign up

Export Citation Format

Share Document