Blind, high-resolution, space-time separation of multipaths in an ionospheric propagation

Radio Science ◽  
2000 ◽  
Vol 35 (1) ◽  
pp. 235-246 ◽  
Author(s):  
M. Chenu-Tournier ◽  
P. Larzabal ◽  
J. P. Barbot ◽  
J. Grouffaud ◽  
A. Ferreol
2016 ◽  
Vol 52 (11) ◽  
pp. 978-980 ◽  
Author(s):  
Xiangyu Li ◽  
Suxia Guo ◽  
Liang Jin ◽  
Kaizhi Huang ◽  
Lu Xia

2011 ◽  
Vol 32 (11) ◽  
pp. 1754-1767 ◽  
Author(s):  
Mario Iamarino ◽  
Sean Beevers ◽  
C. S. B. Grimmond

2012 ◽  
Vol 51 (5) ◽  
pp. 912-925 ◽  
Author(s):  
Evan Ruzanski ◽  
V. Chandrasekar

AbstractThe short-term predictability of precipitation patterns observed by meteorological radar is an important concept as it establishes a means to characterize precipitation and provides an upper limit on the extent of useful nowcasting. Predictability also varies on the basis of spatial and temporal scales of the observed meteorological phenomena. This paper describes an investigation of the short-term predictability of precipitation patterns containing microalpha (0.2–2 km) to mesobeta (20–200 km) scales using high-resolution (0.5 km–1 min–1 dBZ) composite radar reflectivity data, extending the analysis presented in previous work to smaller space and time scales. An experimental approach is used in which continuous and categorical lifetimes of radar reflectivity fields in Eulerian and Lagrangian space are used to quantify short-term predictability. The space–time scale dependency of short-term predictability is analyzed, and a practical upper limit on the extent of Lagrangian persistence-based nowcasting is estimated. Connections to the predictability of larger scales are made within the context of previous work. The results show that short-term predictability estimates in terms of lifetime are approximately 14–15 and 20–21 min in Eulerian and Lagrangian space, respectively, and suggest that a linear relationship exists between predictability and space–time structure from microalpha to macrobeta (2000–10 000 km) scales.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
B. Merk ◽  
V. Glivici-Cotruţă

The different analytical solutions without space-time separation foreseen for the analysis of ADS experiments are described. The SC3A experiment in the YALINA-Booster facility is described and investigated. For this investigation the very special configuration of YALINA-Booster is analyzed based on HELIOS calculations. The results for the time dependent diffusion and the time dependentP1equation are compared with the experimental results for the SC3A configuration. A comparison is given for the deviation between the analytical solution and the experimental results versus the different transport approximations. To improve the representation to the special configuration of YALINA- Booster, a new analytical solution for two energy groups with two sources (central external and boundary source) has been developed starting form the Green's function solution. Very good agreement has been found for these improved analytical solutions.


2018 ◽  
Author(s):  
William Amponsah ◽  
Pierre-Alain Ayral ◽  
Brice Boudevillain ◽  
Christophe Bouvier ◽  
Isabelle Braud ◽  
...  

Abstract. This paper describes an integrated, high-resolution dataset of hydro-meteorological variables (rainfall and discharge) concerning a number of high-intensity flash floods that occurred in Europe and in the Mediterranean region from 1991 to 2015. This type of dataset is rare in the scientific literature because flash floods are typically poorly observed hydrological extremes. Valuable features of the dataset (hereinafter referred to as EuroMedeFF database) include i) its coverage of varied hydro-climatic regions, ranging from Continental Europe through the Mediterranean to Arid climates, ii) the high space-time resolution radar-rainfall estimates, and iii) the dense spatial sampling of the flood response, by observed hydrographs and/or flood peak estimates from post-flood surveys. Flash floods included in the database are selected based on the limited upstream catchment areas (up to 3000 km2), the limited storm durations (up to 2 days), and the unit peak flood magnitude. The EuroMedeFF database comprises 49 events that occurred in France, Israel, Italy, Romania, Germany, and Slovenia, and constitutes a sample of rainfall and flood discharge extremes in different climates. The dataset may be of help to hydrologists as well as other scientific communities because it offers benchmark data for the identification and analysis of the hydro-meteorological causative processes, evaluation of flash flood hydrological models and for hydro-meteorological forecast systems. The dataset also provides a template for the analysis of the space-time variability of flash flood-triggered rainfall fields and of the effects of their estimation on the flood response modelling. The dataset is made available to the public as a "public dataset" with the following DOI: (https://doi.org/10.6096/mistrals-hymex.1493).


Sign in / Sign up

Export Citation Format

Share Document