scholarly journals High-pressure-high-temperature seismic velocity structure of the midcrustal and lower crustal rocks of the Ivrea-Verbano zone and Serie dei Laghi, NW Italy

2000 ◽  
Vol 105 (B6) ◽  
pp. 13843-13858 ◽  
Author(s):  
J. Khazanehdari ◽  
E. H. Rutter ◽  
K. H. Brodie
1992 ◽  
Vol 29 (3) ◽  
pp. 462-478 ◽  
Author(s):  
H. Karin Michel ◽  
K. E. Louden ◽  
F. Marillier ◽  
I. Reid

The crustal velocity structure beneath western Newfoundland is constrained by a reanalysis of older, regional refraction profiles together with an analysis of one new profile. Initial interpretation of the older data gave inconsistent and discontinuous structures that are difficult to reconcile with more recent deep reflection profiles. We also show that traveltimes predicted by the earlier models often do not yield acceptable fits to the original observations. Our reinterpretation reveals a simpler pattern, in which the crust is characterized by a persistent, high-velocity, lower crustal (HVLC) layer. This layer has velocities of 7.0–7.9 kmls and thicknesses of 5–23 km. It is thickest beneath the Grenville crustal block, east of the Appalachian structural front, and thins or is possibly absent within the Central block. Analysis of the new, much higher resolution profile off western Newfoundland confirms the existence of the HVLC layer with a velocity of 7.2 kmls and thicknesses of 11–19 km, increasing to the northeast. The upper crust has well-defined velocities of 6.2–6.4 kmls and is overlain by a complex sandwich of sediment layers with principal velocities of 3.9, 4.95, and 5.58 kmls and maximum total thicknesses of 8.5 km in the south to 5.5 km in the north. Total crustal thickness varies from 39 to 43 km from south to north. Comparison of the velocity–depth models with the pattern of deep crustal reflectivity revealed by deep multichannel profiles shows that the HVLC layer is coincident with a zone of flat-lying reflectors that terminate to the west at the base of the crust beneath the Appalachian structural front. The HVLC may continue eastward to cover a broad region of central Newfoundland as suggested by the older data, but its association with the reflectivity is not clear.


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


2021 ◽  
Vol 137 ◽  
pp. 111189
Author(s):  
E.A. Ekimov ◽  
K.M. Kondrina ◽  
I.P. Zibrov ◽  
S.G. Lyapin ◽  
M.V. Lovygin ◽  
...  

Author(s):  
Gunter Heymann ◽  
Elisabeth Selb ◽  
Toni Buttlar ◽  
Oliver Janka ◽  
Martina Tribus ◽  
...  

By high-pressure/high-temperature multianvil synthesis a new high-pressure (HP) phase of Co3TeO6 was obtained. The compound crystallizes in the acentric trigonal crystal system of the Ni3TeO6-type structure with space group R3...


Sign in / Sign up

Export Citation Format

Share Document