scholarly journals Role of the western Pacific Ocean boundary conditions during 1980–1998in the El Niño-Southern Oscillation events simulated by a coupled ocean-atmospheremodel

2002 ◽  
Vol 107 (C1) ◽  
Author(s):  
Pierre Florenchie
2013 ◽  
Vol 56 (3) ◽  
Author(s):  
Wayan Suparta ◽  
Ahmad Iskandar ◽  
Mandeep Singh Jit Singh ◽  
Mohd. Alauddin Mohd. Ali ◽  
Baharudin Yatim ◽  
...  

<p>We analyzed the variability of global positioning system (GPS) water vapor during the 2011 La Niña events over the western Pacific Ocean. The precipitable water vapor (PWV) derived from the UMSK (Malaysia) GPS station was investigated and compared with four other selected GPS stations: NTUS (Singapore), PIMO (Philippines), BAKO (Indonesia) and TOW2 (Australia). Analysis of the correlation between PWV and the sea-surface temperature anomaly (SSTa) on a weekly basis for the three La Niña cases of January–February–March, August–September–October, and October–November–December was used as an indicator of the influence of the El Niño Southern Oscillation. A good relationship between GPS PWV and SSTa for the Niño 4 region, with correlation coefficients between -0.91 and -0.94, was observed for the August–September–October and October–November–December cases. During the 2011 La Niña events, the water vapor was seen to increase to about 8.39 mm for the October–November–December case, with decreases of about 4.20 mm for the remaining months, compared to the mean 2011 value. This implies that during these events, the precipitation in the western Pacific is increased, due to stronger easterly trade winds blowing along the eastern Pacific Ocean than along the western Pacific, and a mass of warm water moving westwards, thereby increasing the evaporation.</p>


2017 ◽  
Vol 30 (9) ◽  
pp. 3461-3472 ◽  
Author(s):  
Shang-Ping Xie ◽  
Zhen-Qiang Zhou

The spatial structure of atmospheric anomalies associated with El Niño–Southern Oscillation varies with season because of the seasonal variations in sea surface temperature (SST) anomaly pattern and in the climatological basic state. The latter effect is demonstrated using an atmospheric model forced with a time-invariant pattern of El Niño warming over the equatorial Pacific. The seasonal modulation is most pronounced over the north Indian Ocean to northwest Pacific where the monsoonal winds vary from northeasterly in winter to southwesterly in summer. Specifically, the constant El Niño run captures the abrupt transition from a summer cyclonic to winter anticyclonic anomalous circulation over the northwest Pacific, in support of the combination mode idea that emphasizes nonlinear interactions of equatorial Pacific SST forcing and the climatological seasonal cycle. In post–El Niño summers when equatorial Pacific warming has dissipated, SST anomalies over the Indo–northwest Pacific Oceans dominate and anchor the coherent persisting anomalous anticyclonic circulation. A conceptual model is presented that incorporates the combination mode in the existing framework of regional Indo–western Pacific Ocean coupling.


2013 ◽  
Vol 40 (20) ◽  
pp. 5473-5479 ◽  
Author(s):  
Michelle M. Gierach ◽  
Monique Messié ◽  
Tong Lee ◽  
Kristopher B. Karnauskas ◽  
Marie-Hélène Radenac

2019 ◽  
Vol 32 (18) ◽  
pp. 5785-5797 ◽  
Author(s):  
Dong Chen ◽  
Ya Gao ◽  
Huijun Wang

AbstractPrevious studies have noted that a strong El Niño event occurring in the preceding winter will result in westward stretching of the western North Pacific subtropical high (WPSH) in the following summer, causing anomalously high precipitation in the Yangtze–Huaihe River basin and anomalously low precipitation in southern China. The winters preceding the summers of 1998 and 2016 featured strong El Niño events, which, along with the El Niño event of 1982, represented the strongest El Niño events since 1950. Under these similar El Niño event backgrounds, the July precipitation anomaly in 2016 was similar to that in 1998, but the August precipitation anomalies in the two years featured opposite distributions. According to the atmospheric circulation analysis, we found that an anomalous ascending motion appeared over the Indian Ocean, while an anomalous descending motion appeared over the Pacific Ocean in August 1998. In addition, the WPSH stretched westward over southern China. However, the atmospheric circulation distribution in August 2016 was the opposite of that in 1998, and the WPSH was divided into eastern and western parts by the anomalous western Pacific cyclone. Further analysis showed that the number of tropical cyclones and typhoons over the western Pacific Ocean increased significantly in August 2016, and their activities were concentrated in the South China Sea (SCS)–southern China region and the western Pacific Ocean, resulting in the division of the WPSH. Therefore, the numbers, tracks, and strengths of tropical cyclones and typhoons were responsible for the differences in the anomalous precipitation distributions over the East Asia–Pacific Ocean region between August 2016 and August 1998.


Nature ◽  
10.1038/39575 ◽  
1997 ◽  
Vol 389 (6652) ◽  
pp. 715-718 ◽  
Author(s):  
P. Lehodey ◽  
M. Bertignac ◽  
J. Hampton ◽  
A. Lewis ◽  
J. Picaut

Climate ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 57
Author(s):  
Yusuf Jati Wijaya ◽  
Yukiharu Hisaki

The North Equatorial Countercurrent (NECC) is an eastward zonal current closely related to an El Niño Southern Oscillation (ENSO) event. This paper investigated the variations of NECC in the Western Pacific Ocean over 25 years (1993–2017) using satellite data provided by the Copernicus Marine Environment Monitoring Service (CMEMS) and the Remote Sensing System (RSS). The first mode of empirical orthogonal function (EOF) analysis showed that the NECC strengthened or weakened in each El Niño (La Niña) event during the developing or mature phase, respectively. We also found that the NECC shifting was strongly coincidental with an ENSO event. During the developing phase of an El Niño (La Niña) event, the NECC shifted southward (northward), and afterward, when it entered the mature phase, the NECC tended to shift slightly northward (southward). Moreover, the NECC strength was found to have undergone a weakening during the 2008–2017 period.


Sign in / Sign up

Export Citation Format

Share Document