scholarly journals Seasonal Modulations of El Niño–Related Atmospheric Variability: Indo–Western Pacific Ocean Feedback

2017 ◽  
Vol 30 (9) ◽  
pp. 3461-3472 ◽  
Author(s):  
Shang-Ping Xie ◽  
Zhen-Qiang Zhou

The spatial structure of atmospheric anomalies associated with El Niño–Southern Oscillation varies with season because of the seasonal variations in sea surface temperature (SST) anomaly pattern and in the climatological basic state. The latter effect is demonstrated using an atmospheric model forced with a time-invariant pattern of El Niño warming over the equatorial Pacific. The seasonal modulation is most pronounced over the north Indian Ocean to northwest Pacific where the monsoonal winds vary from northeasterly in winter to southwesterly in summer. Specifically, the constant El Niño run captures the abrupt transition from a summer cyclonic to winter anticyclonic anomalous circulation over the northwest Pacific, in support of the combination mode idea that emphasizes nonlinear interactions of equatorial Pacific SST forcing and the climatological seasonal cycle. In post–El Niño summers when equatorial Pacific warming has dissipated, SST anomalies over the Indo–northwest Pacific Oceans dominate and anchor the coherent persisting anomalous anticyclonic circulation. A conceptual model is presented that incorporates the combination mode in the existing framework of regional Indo–western Pacific Ocean coupling.

2012 ◽  
Vol 25 (5) ◽  
pp. 1722-1744 ◽  
Author(s):  
J. S. Chowdary ◽  
Shang-Ping Xie ◽  
Hiroki Tokinaga ◽  
Yuko M. Okumura ◽  
Hisayuki Kubota ◽  
...  

Slow modulation of interannual variability and its relationship to El Niño–Southern Oscillation (ENSO) is investigated for the period of 1870–2007 using shipboard surface meteorological observations along a frequently traveled track across the north Indian Ocean (NIO; from the Gulf of Aden through Malacca Strait) and the South China Sea (to Luzon Strait). During the decades in the late nineteenth–early twentieth century and in the late twentieth century, the El Niño–induced NIO warming persists longer than during the 1910s–mid-1970s, well into the summer following the peak of El Niño. During the epochs of the prolonged NIO warming, rainfall drops and sea level pressure rises over the tropical northwest Pacific in summer following El Niño. Conversely, during the period when the NIO warming dissipates earlier, these atmospheric anomalies are not well developed. This supports the Indian Ocean capacitor concept as a mechanism prolonging El Niño influence into summer through the persistent Indian Ocean warming after El Niño itself has dissipated. The above centennial modulation of ENSO teleconnection to the Indo–northwest Pacific region is reproduced in an atmospheric general circulation model forced by observed SST. The modulation is correlated not with the Pacific decadal oscillation but rather with the ENSO variance itself. When ENSO is strong, its effect in the Indo–northwest Pacific strengthens and vice versa. The fact that enhanced ENSO teleconnections occurred 100 years ago during the late nineteenth–early twentieth century indicates that the recent strengthening of the ENSO correlation over the Indo–western Pacific may not entirely be due to global warming but reflect natural variability.


2013 ◽  
Vol 40 (20) ◽  
pp. 5473-5479 ◽  
Author(s):  
Michelle M. Gierach ◽  
Monique Messié ◽  
Tong Lee ◽  
Kristopher B. Karnauskas ◽  
Marie-Hélène Radenac

2019 ◽  
Vol 32 (18) ◽  
pp. 5785-5797 ◽  
Author(s):  
Dong Chen ◽  
Ya Gao ◽  
Huijun Wang

AbstractPrevious studies have noted that a strong El Niño event occurring in the preceding winter will result in westward stretching of the western North Pacific subtropical high (WPSH) in the following summer, causing anomalously high precipitation in the Yangtze–Huaihe River basin and anomalously low precipitation in southern China. The winters preceding the summers of 1998 and 2016 featured strong El Niño events, which, along with the El Niño event of 1982, represented the strongest El Niño events since 1950. Under these similar El Niño event backgrounds, the July precipitation anomaly in 2016 was similar to that in 1998, but the August precipitation anomalies in the two years featured opposite distributions. According to the atmospheric circulation analysis, we found that an anomalous ascending motion appeared over the Indian Ocean, while an anomalous descending motion appeared over the Pacific Ocean in August 1998. In addition, the WPSH stretched westward over southern China. However, the atmospheric circulation distribution in August 2016 was the opposite of that in 1998, and the WPSH was divided into eastern and western parts by the anomalous western Pacific cyclone. Further analysis showed that the number of tropical cyclones and typhoons over the western Pacific Ocean increased significantly in August 2016, and their activities were concentrated in the South China Sea (SCS)–southern China region and the western Pacific Ocean, resulting in the division of the WPSH. Therefore, the numbers, tracks, and strengths of tropical cyclones and typhoons were responsible for the differences in the anomalous precipitation distributions over the East Asia–Pacific Ocean region between August 2016 and August 1998.


2013 ◽  
Vol 26 (18) ◽  
pp. 7240-7266 ◽  
Author(s):  
Yan Du ◽  
Shang-Ping Xie ◽  
Ya-Li Yang ◽  
Xiao-Tong Zheng ◽  
Lin Liu ◽  
...  

Abstract This study evaluates the simulation of the Indian Ocean Basin (IOB) mode and relevant physical processes in models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Historical runs from 20 CMIP5 models are available for the analysis. They reproduce the IOB mode and its close relationship to El Niño–Southern Oscillation (ENSO). Half of the models capture key IOB processes: a downwelling oceanic Rossby wave in the southern tropical Indian Ocean (TIO) precedes the IOB development in boreal fall and triggers an antisymmetric wind anomaly pattern across the equator in the following spring. The anomalous wind pattern induces a second warming in the north Indian Ocean (NIO) through summer and sustains anticyclonic wind anomalies in the northwest Pacific by radiating a warm tropospheric Kelvin wave. The second warming in the NIO is indicative of ocean–atmosphere interaction in the interior TIO. More than half of the models display a double peak in NIO warming, as observed following El Niño, while the rest show only one winter peak. The intermodel diversity in the characteristics of the IOB mode seems related to the thermocline adjustment in the south TIO to ENSO-induced wind variations. Almost all the models show multidecadal variations in IOB variance, possibly modulated by ENSO.


Climate ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 57
Author(s):  
Yusuf Jati Wijaya ◽  
Yukiharu Hisaki

The North Equatorial Countercurrent (NECC) is an eastward zonal current closely related to an El Niño Southern Oscillation (ENSO) event. This paper investigated the variations of NECC in the Western Pacific Ocean over 25 years (1993–2017) using satellite data provided by the Copernicus Marine Environment Monitoring Service (CMEMS) and the Remote Sensing System (RSS). The first mode of empirical orthogonal function (EOF) analysis showed that the NECC strengthened or weakened in each El Niño (La Niña) event during the developing or mature phase, respectively. We also found that the NECC shifting was strongly coincidental with an ENSO event. During the developing phase of an El Niño (La Niña) event, the NECC shifted southward (northward), and afterward, when it entered the mature phase, the NECC tended to shift slightly northward (southward). Moreover, the NECC strength was found to have undergone a weakening during the 2008–2017 period.


Author(s):  
Hui Zhou ◽  
Hengchang Liu ◽  
Shuwen Tan ◽  
Wenlong Yang ◽  
Yao Li ◽  
...  

AbstractThe structure and variations of the North Equatorial Counter Current (NECC) in the far western Pacific Ocean during 2014-2016 are investigated using repeated in-situ hydrographic data, altimeter data, Argo data, and reanalysis data. The NECC shifted ~1 degree southward and intensified significantly with its transport exceeding 40 Sv (1 Sv = 106 m3 s-1), nearly double its climatology value, during the developing phase of the 2015/16 El Niño event. Observations show that the 2015/16 El Niño exerted a comparable impact on the NECC with that of the extreme 1997/98 El Niño in the far western Pacific Ocean. Baroclinic instability provided the primary energy source for the eddy kinetic energy (EKE) in the 2015/16 El Niño, which differs from the traditional understanding of the energy source of EKE as barotropic instability in low latitude ocean. The enhanced vertical shear and the reduced density jump between the NECC layer and the subsurface North Equatorial Subsurface Current (NESC) layer renders the NECC–NESC system baroclinically unstable in the western Pacific Ocean during El Niño developing phase. The eddy-mean flow interactions here are diverse associated with various states of the El Niño Southern Oscillation (ENSO).


2009 ◽  
Vol 22 (6) ◽  
pp. 1375-1392 ◽  
Author(s):  
Kristopher B. Karnauskas ◽  
Antonio J. Busalacchi

Abstract In comparison with the western and equatorial Pacific Ocean, relatively little is known about the east Pacific warm pool (EPWP). Observations indicate that the interannual variability of sea surface temperature (SST) in the EPWP is highly correlated (0.95) with the El Niño–Southern Oscillation (ENSO). In this paper, an ocean general circulation model (OGCM) of the tropical Pacific Ocean and various atmospheric and oceanic observations are used to diagnose the physical processes governing the interannual variability of SST in the EPWP. Atmospheric forcings for the OGCM are derived purely from satellite observations between 1988 and 2004. Shortwave heating is identified as playing a dominant role in the interannual SST tendency of the EPWP. The high correlation between SST in the EPWP and eastern equatorial Pacific is therefore explained not by ocean processes, but by an atmospheric link. ENSO-driven equatorial SST anomalies modify the distribution of the overlying atmospheric vertical motions and therefore cloud cover and ultimately shortwave heating. During an El Niño event, for example, the ITCZ is equatorward displaced from its normal position over the EPWP, resulting in anomalously large shortwave heating over the EPWP. Analysis of poleward ocean heat transport and coastal Kelvin waves confirms that oceanic processes are not sufficient to explain the interannual variability of the EPWP.


Sign in / Sign up

Export Citation Format

Share Document