ocean boundary
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 41)

H-INDEX

33
(FIVE YEARS 2)

Author(s):  
F. Lhardy ◽  
N. Bouttes ◽  
D. M. Roche ◽  
A. Abe‐Ouchi ◽  
Z. Chase ◽  
...  

2021 ◽  
Author(s):  
Carolyn Branecky Begeman ◽  
Xylar Asay-Davis ◽  
Luke Van Roekel

Abstract. Small scale, turbulent flow below ice shelves is regionally isolated and difficult to measure and simulate. Yet these small scale processes, which regulate heat transfer between the ocean and ice shelves, can affect sea-level rise by altering the ability of Antarctic ice shelves to “buttress” ice flux to the ocean. In this study, we improve our understanding of turbulence below ice shelves by means of large-eddy simulations at sub-meter resolution, capturing boundary layer mixing at scales intermediate between laboratory experiments or direct numerical simulations and regional or global ocean circulation models. Our simulations feature the development of an ice-shelf ocean boundary layer through dynamic ice melting in a regime with low thermal driving, low ice-shelf basal slope, and strong shear driven by the geostrophic flow. We present a preliminary assessment of existing ice-shelf basal melt parameterizations adopted in single component or coupled ice-sheet and ocean models on the basis of a small parameter study. While the parameterized linear relationship between ice-shelf melt rate and far-field ocean temperature appears to be robust, we point out a little-considered relationship between ice-shelf basal slope and melting worthy of further study.


2021 ◽  
pp. SP518-2021-22
Author(s):  
Martin B. Klausen

AbstractDecompressional release of magma at continental triple rift breakup LIP centers, above mantle plume stems, result in highly magmatic settings. As a particularly well exposed example, it is proposed that the East Greenland coastal dyke swarm preserves a structural record of how dyke dilations versus tectonic extension increased upon approaching its Kangerlussuaq triple rift center. Such more magmatic breakup is reflected by how abruptly its volcanic rifted margin transitions into 100% dykes, and in this case up to 100 km farther inland than its geophysically determined continent-ocean boundary. Correspondingly high magma flux through an igneous Kap Edward Holm center sustained the lateral injection of up to 150 km-long dykes, evidenced by increased cut-off dyke thicknesses - below which there is an anomalously low abundance of thinner dykes - that conform to the cube root of their thermal arrest distance. Only the thickest and thereby longest dyke injections linked up with a more southerly located igneous Imilik center of an en echelon offset dyke swarm, the complex transition into which is also addressed. This highly magmatic central plumbing system is further compared to similar volcanic zones across Iceland and other post-Paleozoic breakup LIPs, in order to contextualize its importance.


2021 ◽  
pp. 105255
Author(s):  
Yonglin Wen ◽  
Chun-Feng Li ◽  
Lijie Wang ◽  
Yutao Liu ◽  
Xi Peng ◽  
...  

Science ◽  
2021 ◽  
Vol 372 (6548) ◽  
pp. 1342-1344
Author(s):  
J. N. Bassis ◽  
B. Berg ◽  
A. J. Crawford ◽  
D. I. Benn

Portions of ice sheets grounded deep beneath sea level can disintegrate if tall ice cliffs at the ice-ocean boundary start to collapse under their own weight. This process, called marine ice cliff instability, could lead to catastrophic retreat of sections of West Antarctica on decadal-to-century time scales. Here we use a model that resolves flow and failure of ice to show that dynamic thinning can slow or stabilize cliff retreat, but when ice thickness increases rapidly upstream from the ice cliff, there is a transition to catastrophic collapse. However, even if vulnerable locations like Thwaites Glacier start to collapse, small resistive forces from sea-ice and calved debris can slow down or arrest retreat, reducing the potential for sustained ice sheet collapse.


2021 ◽  
Author(s):  
Fanny Lhardy ◽  
Nathaelle Bouttes ◽  
Didier M. Roche ◽  
Ayako Abe-Ouchi ◽  
Zanna Chase ◽  
...  

Author(s):  
A.I. Malinovsky ◽  

The article discusses the results of studying heavy clastic minerals from the Cretaceous sandy rocks of the West Sakhalin Terrane, and also presents their paleogeodynamic interpretation. It is shown that in terms of mineralogical and petrographic parameters, the terrane sandstones correspond to typical graywackes and are petrogenic rocks formed mainly by destruction of igneous rocks of the source areas. The sediments were found to contain both sialic, granite-metamorphic association minerals, and femic, formed by products of the destruction of basic and ultrabasic volcanic rocks. The interpretation of the entire set of data on the content, distribution and microchemical composition of heavy minerals was carried out by comparing them with minerals from older rocks and modern sediments accumulated in known geodynamic settings. The results obtained indicate that during the Cretaceous, sedimentation occurred along the continent-ocean boundary in a basin associated with large-scale left-lateral transform movements of the Izanagi Plate relative to the Eurasian continent. The source area that supplied clastic material to that basin combined a sialic landmass composed of granite-metamorphic and sedimentary rocks, a mature deeply dissected ensialic island arc, and fragments of accretion prisms, in the structure of which involved ophiolites.


Author(s):  
Maureen A. Downing-Kunz ◽  
Paul A. Work ◽  
David H. Schoellhamer

AbstractSuspended-sediment flux at the ocean boundary of the San Francisco Estuary—the Golden Gate—was measured over a tidal cycle following peak watershed runoff from storms to the estuary in two successive years to investigate sediment transport through the estuary. Observations were repeated during low-runoff conditions, for a total of three field campaigns. Boat-based measurements of velocity and acoustic backscatter were used to calculate water and suspended-sediment flux at a location 1 km landward of the Golden Gate. Suspended-sediment concentration (SSC) and salinity data from up-estuary sensors were used to track watershed-sourced sediment plumes through the estuary. Estimates of suspended-sediment load from the watershed and net suspended-sediment flux for one up-estuary subembayment were used to infer in-estuary trapping of sediment. For both post-storm field campaigns, observations at the ocean boundary were conducted on the receding limb of the watershed hydrograph. At the ocean boundary, peak instantaneous suspended-sediment flux was tidally asymmetric and was greater on flood tides than on ebb tides for all three field campaigns, due to higher average SSC in the cross-section on flood tides. Shear-induced sediment resuspension was greater on flood tides and suggests the presence of an erodible pool outside the estuary. The storms in 2016 led to less export of discharge and sediment from the watershed and greater sediment trapping within one up-estuary subembayment compared to that observed in 2017. Results suggest that substantial trapping of watershed sediments occurred during both storm events, likely due to the formation of estuarine turbidity maxima (ETM) at different locations in the estuary. ETM locations were forced nearer the ocean boundary in 2017. Additional measurements and modeling are required to quantify the long-term sediment flux at the Golden Gate.


Sign in / Sign up

Export Citation Format

Share Document