scholarly journals Seasonal current simulations for the western continental margin of Vancouver Island

2000 ◽  
Vol 105 (C8) ◽  
pp. 19665-19698 ◽  
Author(s):  
M. G. G. Foreman ◽  
R. E. Thomson ◽  
C. L. Smith
1972 ◽  
Vol 9 (3) ◽  
pp. 280-296 ◽  
Author(s):  
D. L. Tiffin ◽  
B. E. B. Cameron ◽  
J. W. Murray

Sampling and seismic profiling in the Tofino Basin west of Vancouver Island show there is a thick sequence of Tertiary rocks ranging in age from late Eocene to Pliocene. The rocks are mainly mudstones containing abundant foraminifera indicating a bathyal depositional environment throughout most of the Tertiary. Subsequent uplift has exposed the deep water sediments on the shelf over much of the area. Eocene-Oligocene sediments occur in a belt along the inner shelf, while Miocene and Pliocene rocks lie seaward of this. Pliocene rocks form a regressive sequence overlapping the older Tertiary, with the greatest thickness in the south.At least two major periods of deformation resulted in faulting, folding, and diapirism on the continental shelf. Deformational patterns show a marked change from north to south. North of Brooks Peninsula sediments are undeformed by folding but are truncated by faulting along the steep continental slope. The Kyuquot Uplift south of Brooks Peninsula exposes Eocene-Oligocene sediments across the shelf. Farther south Mio-Pliocene sediments unconformably overlie the uplift. Folding increases southward culminating in an area of diapirism off Nootka Sound. Elongate diapirs trend parallel or subparallel to the coastline.Tectonic features on the shelf and slope appear to be related to present and earlier configurations of nearby offshore spreading centers, plates, and transform faults. Crustal plate movements may have been responsible for the observed shelf and slope deformations.


2007 ◽  
Vol 95 (1-3) ◽  
pp. 40-47 ◽  
Author(s):  
Hitoshi Tomaru ◽  
Ryo Matsumoto ◽  
Richard B. Coffin ◽  
John W. Pohlman ◽  
George D. Spence

1977 ◽  
Vol 14 (9) ◽  
pp. 2062-2085 ◽  
Author(s):  
J. E. Muller

The tectonic–stratigraphic evolution of Vancouver Island, a part of the Insular Belt, is reviewed as it relates to the other major tectonic belts recognized in the western Cordillera of Canada and the adjacent United States. The Pacific Belt, recognized south of the international border, is also identified in the west and south of the island. Oldest rocks of the Insular Belt are a late Paleozoic volcanic arc terrane and a crystalline 'basement' that is probably pre-Devonian. A thick Upper Triassic succession of tholeiitic pillow lavas and flows, overlain by carbonate–clastic sediments, rests in part on the Paleozoic. Elsewhere the tholeiite may represent oceanic floor, perhaps formed when the Insular Belt was fragmented and rifted off the continental margin far to the south. Above it the Early Jurassic volcanic arc with related batholiths may have been aligned with a similar terrane in the Intermontane Belt before the two belts assumed parallel positions in late Mesozoic time. An Upper Jurassic – Lower Cretaceous westward thickening clastic wedge indicates uplift and erosion of the volcanic arc in late Mesozoic time. Further west the 'inner Pacific Belt' of Jura-Cretaceous elastics and chert represent slope and trench deposits that have been deformed to mélange or converted to schist. They are coeval and homologous to Franciscan and Chugach Terranes and probably mark the late Mesozoic trench and subduction zone along the continental margin. The Coast Plutonic Belt represents the related volcanic arc, and pre-Cretaceous Insular Belt rocks, unconformably overlain by Cretaceous clastic sediments, represent the arc–trench gap and fore-arc basin. Until Late Cretaceous time convergence of the Insular and Pacific Belts occurred along San Juan Fault. In early Tertiary time Eocene oceanic basalt (Outer Pacific Belt) and Jura-Cretaceous metasediments (Inner Pacific Belt) converged by under-thrusting and (or) strike–slip faulting along Leech River Fault. In Late Eocene time the trench and subduction zone shifted westward to the present core zone of the Olympic Mountains and shifted again in Miocene time to its present position.


Sign in / Sign up

Export Citation Format

Share Document