Improved simulations of snow extent in the second phase of the Atmospheric Model Intercomparison Project (AMIP-2)

2003 ◽  
Vol 108 (D12) ◽  
Author(s):  
Allan Frei
2005 ◽  
Vol 6 (5) ◽  
pp. 681-695 ◽  
Author(s):  
Allan Frei ◽  
Ross Brown ◽  
James A. Miller ◽  
David A. Robinson

Abstract Eighteen global atmospheric general circulation models (AGCMs) participating in the second phase of the Atmospheric Model Intercomparison Project (AMIP-2) are evaluated for their ability to simulate the observed spatial and temporal variability in snow mass, or water equivalent (SWE), over North America during the AMIP-2 period (1979–95). The evaluation is based on a new gridded SWE dataset developed from objective analysis of daily snow depth observations from Canada and the United States with snow density estimated from a simple snowpack model. Most AMIP-2 models simulate the seasonal timing and the relative spatial patterns of continental-scale SWE fairly well. However, there is a tendency to overestimate the rate of ablation during spring, and significant between-model variability is found in every aspect of the simulations, and at every spatial scale analyzed. For example, on the continental scale, the peak monthly SWE integrated over the North American continent in AMIP-2 models varies between ±50% of the observed value of ∼1500 km3. The volume of water in the snowpack, and the magnitudes of model errors, are significant in comparison to major fluxes in the continental water balance. It also appears that the median result from the suite of models tends to do a better job of estimating climatological mean features than any individual model. Year-to-year variations in large-scale SWE are only weakly correlated to observed variations, indicating that sea surface temperatures (specified from observations as boundary conditions) do not drive interannual variations of SWE in these models. These results have implications for simulations of the large-scale hydrologic cycle and for climate change impact assessments.


2005 ◽  
Vol 18 (7) ◽  
pp. 973-981 ◽  
Author(s):  
Judah Cohen ◽  
Allan Frei ◽  
Richard D. Rosen

Abstract The simulated North Atlantic Oscillation (NAO) teleconnection patterns and their interannual variability are evaluated from a suite of atmospheric models participating in the second phase of the Atmospheric Model Intercomparison Project (AMIP-2). In general the models simulate the observed spatial pattern well, although there are important differences among models. The NAO response to interannual variations in sea surface temperature (SST) and snow-cover boundary forcings are also evaluated. The simulated NAO indices are not correlated with the observed NAO index, despite being forced with observed SSTs, indicating that SSTs are not driving NAO variability in the models. Similarly, although a number of studies have identified a link between Eurasian snow extent and the phase of the NAO, no such link is apparent in the AMIP-2 results. It appears that, within the framework of the AMIP-2 experiments, the NAO is an internal mode of atmospheric variability and that impacts of SSTs and Eurasian snow cover on the phase of the NAO are not discernable. However, these conclusions do not necessarily apply to decadal-scale and longer variability or to coupled atmosphere–ocean models.


Author(s):  
W. Lawrence Gates ◽  
James S. Boyle ◽  
Curt Covey ◽  
Clyde G. Dease ◽  
Charles M. Doutriaux ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document