scholarly journals Modeling the water masses of the Atlantic Ocean at the Last Glacial Maximum

2003 ◽  
Vol 18 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
André Paul ◽  
Christian Schäfer-Neth
2016 ◽  
Vol 434 ◽  
pp. 141-150 ◽  
Author(s):  
Priyadarsi D. Roy ◽  
Axel Rivero-Navarrete ◽  
José L. Sánchez-Zavala ◽  
Laura E. Beramendi-Orosco ◽  
Gowrappan Muthu-Sankar ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marit-Solveig Seidenkrantz ◽  
Antoon Kuijpers ◽  
Steffen Aagaard-Sørensen ◽  
Holger Lindgreen ◽  
Jesper Olsen ◽  
...  

AbstractThe Last Glacial Maximum (LGM, 23–19,000 year BP) designates a period of extensive glacial extent and very cold conditions on the Northern Hemisphere. The strength of ocean circulation during this period has been highly debated. Based on investigations of two marine sediment cores from the Davis Strait (1033 m water depth) and the northern Labrador Sea (2381 m), we demonstrate a significant influx of Atlantic-sourced water at both subsurface and intermediate depths during the LGM. Although surface-water conditions were cold and sea-ice loaded, the lower strata of the (proto) West Greenland Current carried a significant Atlantic (Irminger Sea-derived) Water signal, while at the deeper site the sea floor was swept by a water mass comparable with present Northeast Atlantic Deep Water. The persistent influx of these Atlantic-sourced waters entrained by boundary currents off SW Greenland demonstrates an active Atlantic Meridional Overturning Circulation during the LGM. Immediately after the LGM, deglaciation was characterized by a prominent deep-water ventilation event and potentially Labrador Sea Water formation, presumably related to brine formation and/or hyperpycnal meltwater flows. This was followed by a major re-arrangement of deep-water masses most likely linked to increased overflow at the Greenland-Scotland Ridge after ca 15 kyr BP.


2013 ◽  
Vol 9 (6) ◽  
pp. 6375-6395 ◽  
Author(s):  
J. M. Marson ◽  
I. Wainer ◽  
Z. Liu ◽  
M. M. Mata

Abstract. Since 21 000 yr ago, the oceans have received large amounts of freshwater in pulses coming from the melting ice sheets. A specific event, known as meltwater pulse 1A (MWP-1A), has been identified in sea-level and temperature proxy records as responsible for the increase of ~20 m in sea level in less than 500 yr. Although its origin and timing are still under discussion, MWP-1A seems to have had a significant impact on several components of the climatic system. The present work aims to elucidate these impacts on the water mass distribution of the South Atlantic Ocean through the analysis of a transient simulation of the climate evolution from the Last Glacial Maximum to Present Day using a state-of-art CGCM, the National Center for Atmospheric Research Community Climate System Model version 3 (NCAR CCSM3). Results show that the freshwater discharge associated with the timing of MWP-1A was crucial to establish the present thermohaline structure associated with the North Atlantic Deep Water, marking the transition between a shallower and a deeper Atlantic Meridional Overturning Circulation.


2018 ◽  
Vol 33 (5) ◽  
pp. 530-543 ◽  
Author(s):  
F. Pöppelmeier ◽  
M. Gutjahr ◽  
P. Blaser ◽  
L. D. Keigwin ◽  
J. Lippold

Sign in / Sign up

Export Citation Format

Share Document