scholarly journals Increasing exchanges at Greenland-Scotland Ridge and their links with the North Atlantic Oscillation and Arctic Sea Ice

2004 ◽  
Vol 31 (9) ◽  
pp. n/a-n/a ◽  
Author(s):  
Jinlun Zhang ◽  
Michael Steele ◽  
D. Andrew Rothrock ◽  
Ronald W. Lindsay
2017 ◽  
Vol 50 (1-2) ◽  
pp. 443-443 ◽  
Author(s):  
Mihaela Caian ◽  
Torben Koenigk ◽  
Ralf Döscher ◽  
Abhay Devasthale

2017 ◽  
Vol 50 (1-2) ◽  
pp. 423-441 ◽  
Author(s):  
Mihaela Caian ◽  
Torben Koenigk ◽  
Ralf Döscher ◽  
Abhay Devasthale

2017 ◽  
Vol 30 (9) ◽  
pp. 3157-3167 ◽  
Author(s):  
S. Close ◽  
M.-N. Houssais ◽  
C. Herbaut

The dominant mode of Arctic sea ice variability in winter is often maintained to be represented by a quadrupole structure, comprising poles of one sign in the Okhotsk, Greenland, and Barents Seas and of opposing sign in the Labrador and Bering Seas, forced by the North Atlantic Oscillation. This study revisits this large-scale winter mode of sea ice variability using microwave satellite and reanalysis data. It is found that the quadrupole structure does not describe a significant covariance relationship among all four component poles. The first empirical orthogonal mode, explaining covariability in the sea ice of the Barents, Greenland, and Okhotsk Seas, is linked to the Siberian high, while the North Atlantic Oscillation only exhibits a significant relationship with the Labrador Sea ice, which varies independently as the second mode. The principal components are characterized by a strong low-frequency signal; because the satellite record is still short, these results suggest that statistical analyses should be applied cautiously.


2019 ◽  
Vol 15 (6) ◽  
pp. 2031-2051 ◽  
Author(s):  
Niccolò Maffezzoli ◽  
Paul Vallelonga ◽  
Ross Edwards ◽  
Alfonso Saiz-Lopez ◽  
Clara Turetta ◽  
...  

Abstract. Although it has been demonstrated that the speed and magnitude of the recent Arctic sea ice decline is unprecedented for the past 1450 years, few records are available to provide a paleoclimate context for Arctic sea ice extent. Bromine enrichment in ice cores has been suggested to indicate the extent of newly formed sea ice areas. Despite the similarities among sea ice indicators and ice core bromine enrichment records, uncertainties still exist regarding the quantitative linkages between bromine reactive chemistry and the first-year sea ice surfaces. Here we present a 120 000-year record of bromine enrichment from the RECAP (REnland ice CAP) ice core, coastal east Greenland, and interpret it as a record of first-year sea ice. We compare it to existing sea ice records from marine cores and tentatively reconstruct past sea ice conditions in the North Atlantic as far north as the Fram Strait (50–85∘ N). Our interpretation implies that during the last deglaciation, the transition from multi-year to first-year sea ice started at ∼17.5 ka, synchronously with sea ice reductions observed in the eastern Nordic Seas and with the increase in North Atlantic ocean temperature. First-year sea ice reached its maximum at 12.4–11.8 ka during the Younger Dryas, after which open-water conditions started to dominate, consistent with sea ice records from the eastern Nordic Seas and the North Icelandic shelf. Our results show that over the last 120 000 years, multi-year sea ice extent was greatest during Marine Isotope Stage (MIS) 2 and possibly during MIS 4, with more extended first-year sea ice during MIS 3 and MIS 5. Sea ice extent during the Holocene (MIS 1) has been less than at any time in the last 120 000 years.


2017 ◽  
Vol 30 (12) ◽  
pp. 4547-4565 ◽  
Author(s):  
Doug M. Smith ◽  
Nick J. Dunstone ◽  
Adam A. Scaife ◽  
Emma K. Fiedler ◽  
Dan Copsey ◽  
...  

The atmospheric response to Arctic and Antarctic sea ice changes typical of the present day and coming decades is investigated using the Hadley Centre global climate model (HadGEM3). The response is diagnosed from ensemble simulations of the period 1979 to 2009 with observed and perturbed sea ice concentrations. The experimental design allows the impacts of ocean–atmosphere coupling and the background atmospheric state to be assessed. The modeled response can be very different to that inferred from statistical relationships, showing that the response cannot be easily diagnosed from observations. Reduced Arctic sea ice drives a local low pressure response in boreal summer and autumn. Increased Antarctic sea ice drives a poleward shift of the Southern Hemisphere midlatitude jet, especially in the cold season. Coupling enables surface temperature responses to spread to the ocean, amplifying the atmospheric response and revealing additional impacts including warming of the North Atlantic in response to reduced Arctic sea ice, with a northward shift of the Atlantic intertropical convergence zone and increased Sahel rainfall. The background state controls the sign of the North Atlantic Oscillation (NAO) response via the refraction of planetary waves. This could help to resolve differences in previous studies, and potentially provides an “emergent constraint” to narrow the uncertainties in the NAO response, highlighting the need for future multimodel coordinated experiments.


Sign in / Sign up

Export Citation Format

Share Document