scholarly journals Halocline structure in the Canada Basin of the Arctic Ocean

2005 ◽  
Vol 32 (3) ◽  
Author(s):  
Koji Shimada
2007 ◽  
Vol 37 (4) ◽  
pp. 1066-1076 ◽  
Author(s):  
M-L. Timmermans ◽  
H. Melling ◽  
L. Rainville

Abstract A 50-day time series of high-resolution temperature in the deepest layers of the Canada Basin in the Arctic Ocean indicates that the deep Canada Basin is a dynamically active environment, not the quiet, stable basin often assumed. Vertical motions at the near-inertial (tidal) frequency have amplitudes of 10– 20 m. These vertical displacements are surprisingly large considering the downward near-inertial internal wave energy flux typically observed in the Canada Basin. In addition to motion in the internal-wave frequency band, the measurements indicate distinctive subinertial temperature fluctuations, possibly due to intrusions of new water masses.


Author(s):  
Mary C. O’Brien ◽  
Humfrey Melling ◽  
Thomas F. Pedersen ◽  
Robie W. Macdonald

Polar Record ◽  
2015 ◽  
Vol 52 (1) ◽  
pp. 114-117 ◽  
Author(s):  
Ling Lin ◽  
Jianfeng He ◽  
Fang Zhang ◽  
Shunan Cao ◽  
Can Zhang

ABSTRACTMelt ponds are common on the surface of ice floes in the Arctic Ocean during spring and summer. Few studies on melt pond algae communities have been accomplished. These studies have shown that these melt ponds were ultra-oligotrophic, and contribute little to overall productivity. However, during the 6th Chinese Arctic Cruise in the Arctic Ocean in summer 2014, a closed coloured melt pond with a chlorophyll a concentration of 15.32 μg/L was observed on Arctic pack ice in the Canada Basin. The bloom was caused by the chlorophyte Carteria lunzensis at an abundance of 15.49×106 cells/L and biomass of 5.07 mg C/L. Primary production within surface melt ponds may need more attention along with Arctic warming.


2002 ◽  
Vol 49 (9) ◽  
pp. 1623-1649 ◽  
Author(s):  
Igor A Melnikov ◽  
Elena G Kolosova ◽  
Harold E Welch ◽  
Ludmila S Zhitina

2012 ◽  
Vol 9 (3) ◽  
pp. 1217-1224 ◽  
Author(s):  
D. R. Griffith ◽  
A. P. McNichol ◽  
L. Xu ◽  
F. A. McLaughlin ◽  
R. W. Macdonald ◽  
...  

Abstract. Arctic warming is projected to continue throughout the coming century. Yet, our currently limited understanding of the Arctic Ocean carbon cycle hinders our ability to predict how changing conditions will affect local Arctic ecosystems, regional carbon budgets, and global climate. We present here the first set of concurrent, full-depth, dual-isotope profiles for dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and suspended particulate organic carbon (POCsusp) at two sites in the Canada Basin of the Arctic Ocean. The carbon isotope composition of sinking and suspended POC in the Arctic contrasts strongly with open ocean Atlantic and Pacific sites, pointing to a combination of inputs to Arctic POCsusp at depth, including surface-derived organic carbon (OC), sorbed/advected OC, and OC derived from in situ DIC fixation. The latter process appears to be particularly important at intermediate depths, where mass balance calculations suggest that OC derived from in situ DIC fixation contributes up to 22% of POCsusp. As in other oceans, surface-derived OC is still a dominant source to Arctic POCsusp. Yet, we suggest that significantly smaller vertical POC fluxes in the Canada Basin make it possible to see evidence of DIC fixation in the POCsusp pool even at the bulk isotope level.


2004 ◽  
Vol 222 (3-4) ◽  
pp. 915-932 ◽  
Author(s):  
S.M. Trimble ◽  
M. Baskaran ◽  
D. Porcelli

2021 ◽  
Vol 8 ◽  
Author(s):  
Mark A. Brzezinski ◽  
Ivia Closset ◽  
Janice L. Jones ◽  
Gregory F. de Souza ◽  
Colin Maden

The silicon isotope composition of silicic acid, δ30Si(OH)4, in the deep Arctic Ocean is anomalously heavy compared to all other deep ocean basins. To further evaluate the mechanisms leading to this condition, δ30Si(OH)4 was examined on US GEOTRACES section GN01 from the Bering Strait to the North Pole. Isotope values in the polar mixed layer showed a strong influence of the transpolar drift. Drift waters contained relatively high [Si(OH)4] with heavy δ30Si(OH)4 consistent with the high silicate of riverine source waters and strong biological Si(OH)4 consumption on the Eurasian shelves. The maximum in silicic acid concentration, [Si(OH)4], within the double halocline of the Canada Basin formed a local minimum in δ30Si(OH)4 that extended across the Canada Basin, reflecting the high-[Si(OH)4] Pacific source waters and benthic inputs of Si(OH)4 in the Chukchi Sea. δ30Si(OH)4 became lighter with the increase in [Si(OH)4] in intermediate and deep waters; however, both Canada Basin deep water and Eurasian Basin deep water were heavier than deep waters from other ocean basins. A preliminary isotope budget incorporating all available Arctic δ30Si(OH)4 data confirms the importance of isotopically heavy inflows in creating the anomalous deep Arctic Si isotope signature, but also reveals a surprising similarity in the isotopic composition of the major inflows compared to outflows across the main gateways connecting the Arctic with the Pacific and the Atlantic. This similarity implies a major role of biological productivity and opal burial in removing light isotopes entering the Arctic Ocean from rivers.


Sign in / Sign up

Export Citation Format

Share Document