scholarly journals High-altitude clear-sky direct solar ultraviolet irradiance at Leh and Hanle in the western Himalayas: Observations and model calculations

2004 ◽  
Vol 109 (D19) ◽  
Author(s):  
Sachchidanand Singh
Author(s):  
Manoj K Srivastava ◽  
Sachchidanand Singh ◽  
Auromeet Saha ◽  
U. C. Dumka ◽  
Prashant Hegde ◽  
...  

1993 ◽  
Vol 98 (D5) ◽  
pp. 8891-8897 ◽  
Author(s):  
J. E. Frederick ◽  
P. F. Soulen ◽  
S. B. Diaz ◽  
I. Smolskaia ◽  
C. R. Booth ◽  
...  

2014 ◽  
Vol 64 ◽  
pp. 197-202 ◽  
Author(s):  
Germán Salazar ◽  
Carlos Raichijk

2014 ◽  
Vol 7 (5) ◽  
pp. 4623-4657
Author(s):  
M. Mech ◽  
E. Orlandi ◽  
S. Crewell ◽  
F. Ament ◽  
L. Hirsch ◽  
...  

Abstract. An advanced package of microwave remote sensing instrumentation has been developed for the operation on the new German High Altitude LOng range research aircraft (HALO). The HALO Microwave Package, HAMP, consists of two nadir looking instruments: a cloud radar at 36 GHz and a suite of passive microwave radiometers with 26 frequencies in different bands between 22.24 and 183.31 ± 12.5 GHz. We present a description of HAMP's instrumentation together with an illustration of its potential. To demonstrate this potential synthetic measurements for the implemented passive microwave frequencies and the cloud radar based on cloud resolving and radiative transfer model calculations were performed. These illustrate the advantage of HAMP's chosen frequency coverage, which allows for improved detection of hydrometeors both via the emission and scattering of radiation. Regression algorithms compare HAMP retrieval with standard satellite instruments from polar orbiters and show its advantages particularly for the lower atmosphere with a reduced root mean square error by 5 and 15% for temperature and humidity, respectively. HAMP's main advantage is the high spatial resolution of about 1 km which is illustrated by first measurements from test flights. Together these qualities make it an exciting tool for gaining better understanding of cloud processes, testing retrieval algorithms, defining future satellite instrument specifications, and validating platforms after they have been placed in orbit.


2008 ◽  
Vol 8 (2) ◽  
pp. 4949-4976
Author(s):  
G. Bernhard ◽  
C. R. Booth ◽  
J. C. Ehramjian

Abstract. An SUV-150B spectroradiometer for measuring solar ultraviolet (UV) irradiance was installed at Summit, Greenland, in August 2004. Here we compare the initial data from this new location with similar measurements from Barrow, Alaska and South Pole. Measurements of irradiance at 345 nm performed at equivalent solar zenith angles (SZAs) are almost identical at Summit and South Pole. The good agreement can be explained with the similar location of the two sites on high-altitude ice caps with high surface albedo. Clouds have little impact at both sites, but can reduce irradiance at Barrow by more than 75%. Clear-sky measurements at Barrow are smaller than at Summit by 14% in spring and 36% in summer, mostly due to differences in surface albedo and altitude. Comparisons with model calculations indicate that aerosols can reduce clear-sky irradiance at 345 nm by 4–6%; aerosol influence is largest in April. Differences in total ozone at the three sites have a large influence on the UV Index. At South Pole, the UV Index is on average 20–80% larger during the ozone hole period than between January and March. At Summit, total ozone peaks in April and UV Indices in spring are on average 10–25% smaller than in the summer. Maximum UV Indices ever observed at Summit and South Pole are 6.7 and 4.0, respectively. The larger value at Summit is due to the site's lower latitude. For comparable SZAs, average UV Indices measured during October and November at South Pole are 1.9–2.4 times larger than measurements during March and April at Summit. Average UV Indices at Summit are over 50% greater than at Barrow because of the larger cloud influence at Barrow.


The Holocene ◽  
2020 ◽  
Vol 30 (5) ◽  
pp. 733-743 ◽  
Author(s):  
Rayees Ahmad Shah ◽  
Hema Achyuthan ◽  
Aasif Mohmad Lone ◽  
Sanjeev Kumar ◽  
Pankaj Kumar ◽  
...  

We present a comprehensive record of Holocene (11,590–628 cal. yr BP) climate and hydrographic changes around the Wular Lake located in Kashmir Valley, India. Based on the multi-proxy investigations, we have identified three phases of wet climate conditions that prevailed from the commencement of the Holocene Epoch – 9000 cal. yr BP, 8100–6650 cal. yr BP and 6350–5000 cal. yr BP, whereas periods of dry climate were observed during 9000–8100 cal. yr BP, 6650–6350 cal. yr BP and ~5000 to 4000 cal. yr BP. The results also suggested that the lake widened and deepened significantly around 6350–5000 cal. yr BP. The results indicated desiccation and the exposure of the lake margin around 5000–4500 cal. yr BP. The sedimentation rate since 4500–628 cal. yr BP was quite low for detailed paleoclimate interpretations. Oscillations in lake extension and deepening appear to be due to changing intensity of westerly moisture in the region, and we correlate several of the low lake-level phases to the Bond events caused by North Atlantic ice rafting events.


2020 ◽  
Vol 33 (1) ◽  
pp. 61-75 ◽  
Author(s):  
Norman G. Loeb ◽  
Fred G. Rose ◽  
Seiji Kato ◽  
David A. Rutan ◽  
Wenying Su ◽  
...  

AbstractA new method of determining clear-sky radiative fluxes from satellite observations for climate model evaluation is presented. The method consists of applying adjustment factors to existing satellite clear-sky broadband radiative fluxes that make the observed and simulated clear-sky flux definitions more consistent. The adjustment factors are determined from the difference between observation-based radiative transfer model calculations of monthly mean clear-sky fluxes obtained by ignoring clouds in the atmospheric column and by weighting hourly mean clear-sky fluxes with imager-based clear-area fractions. The global mean longwave (LW) adjustment factor is −2.2 W m−2 at the top of the atmosphere and 2.7 W m−2 at the surface. The LW adjustment factors are pronounced at high latitudes during winter and in regions with high upper-tropospheric humidity and cirrus cloud cover, such as over the west tropical Pacific, and the South Pacific and intertropical convergence zones. In the shortwave (SW), global mean adjustment is 0.5 W m−2 at TOA and −1.9 W m−2 at the surface. It is most pronounced over sea ice off of Antarctica and over heavy aerosol regions, such as eastern China. However, interannual variations in the regional SW and LW adjustment factors are small compared to those in cloud radiative effect. After applying the LW adjustment factors, differences in zonal mean cloud radiative effect between observations and climate models decrease markedly between 60°S and 60°N and poleward of 65°N. The largest regional improvements occur over the west tropical Pacific and Indian Oceans. In contrast, the impact of the SW adjustment factors is much smaller.


1982 ◽  
Vol 30 (1) ◽  
pp. 67-71 ◽  
Author(s):  
Paul C. Simon ◽  
Roger Pastiels ◽  
Dennis Nevejans

Sign in / Sign up

Export Citation Format

Share Document