scholarly journals Local scour at vertical-wall abutments under clear-water flow conditions

2006 ◽  
Vol 42 (10) ◽  
Author(s):  
Cristina Maria Sena Fael ◽  
Gonzalo Simarro-Grande ◽  
Juan-Pedro Martín-Vide ◽  
António Heleno Cardoso
2015 ◽  
Vol 10 (Special-Issue1) ◽  
pp. 47-55 ◽  
Author(s):  
Alireza Arabani ◽  
Human Hajikandi

The performance of vertical triple plates as a new countermeasure in control of local scour around a cylindrical model pier is studied. Two ones of the plates are attached to the side wall one of the pier at one pier diameter distance, extending toward upstream distance and the third one is located in the middle, attached to the pier nose. All the three plates are parallel to flow direction. Experiments are conducted for five different depths of flow and two different lengths of the lateral plates, namely 8 and 14 cm. all the runs are performed under the clear water flow over uniform sediment. The results showed a maximum efficiency of 76% in scour reduction for 8 cm long side plates and 85% for 14 cm long ones.it is also found that the proposed setup act simultaneously as both the bed armoring and flow altering countermeasure.


Author(s):  
Neveen Y. Saad ◽  
Ehab M. Fattouh ◽  
M. Mokhtar

Abstract Local scour is the most significant cause of bridge failure. Providing a short abutment with a straight slot has proved to be an effective method for reducing scour at this abutment. In this study, laboratory experiments have been conducted to investigate the effectiveness of using L-shaped slots in comparison to the commonly used straight slot, on the scour reduction at short vertical-wall abutment under clear-water flow conditions and uniform bed materials. The slots were just above the bed and their diameters equal to half the abutment's length. The results illustrated that it is essential to have a straight slot in any combination of slots, as any configuration without one is inefficient. Also, a combination of a straight slot with one side slot in the middle of the abutment's width gives better performance than an individual straight slot, as it reduces the depth, area, and volume of the scour hole by about 32.6, 26.8, and 43.6% respectively, in comparison to 23.2, 20.7, and 35.3% for the straight slot alone.


2012 ◽  
Vol 138 (2) ◽  
pp. 177-185 ◽  
Author(s):  
Ata Amini ◽  
Bruce W. Melville ◽  
Thamer M. Ali ◽  
Abdul H. Ghazali

2007 ◽  
Vol 34 (4) ◽  
pp. 549-556 ◽  
Author(s):  
Şerife Yurdagül Kumcu ◽  
Mustafa Gögüş ◽  
Mehmet Ali Kökpinar

This study investigated the reduction of scour around a vertical-wall bridge abutment using rectangular collars for clear-water flow conditions over uniform sediment particles in a laboratory flume. Collars of different sizes and at different elevations were tested to determine the temporal variation of scour depth around the bridge abutment. The development of scour around the abutments with and without a collar for a time period of 6 h was studied, and observed scour depths were compared. Experimental results showed that, in addition to protecting the abutments against erosion, the addition of a collar is effective in reducing the rate of temporal scour development. A comparison of the present results with those from previous studies revealed that the effectiveness of a collar increases with a decrease in the elevation of the collar and an increase in the width of the collar.Key words: bridge abutment, collar, experimentation, hydraulics, scour, temporal variation.


2014 ◽  
Vol 9 (3) ◽  
pp. 331-343 ◽  
Author(s):  
N. Ahmad ◽  
T. Mohamed ◽  
F. H. Ali ◽  
B. Yusuf

Laboratory data for local scour depth regarding the size of wide piers are presented. Clear water scour tests were performed for various pier widths (0.06, 0.076, 0.102, 0.14 and 0.165 m), two types of pier shapes (circular and rectangular) and two types of uniform cohesionless bed sediment (d50 = 0.23 and d50 = 0.80 mm). New data are presented and used to demonstrate the effects of pier width, pier shape and sediment size on scour depth. The influence of equilibrium time (te) on scouring processes is also discussed. Equilibrium scour depths were found to decrease with increasing values of b/d50. The temporal development of equilibrium local scour depth with new laboratory data is demonstrated for flow intensity V/Vc = 0.95. On the other hand, the results of scour mechanism have shown a significant relationship between normalized volume of scoured and deposited with pier width, b. The experimental data obtained in this study and data available from the literature for wide piers are used to evaluate predictions of existing methods.


2021 ◽  
Author(s):  
Yi Xu ◽  
Valyrakis Manousos ◽  
Panagiotis Michalis

<p>Instream vegetation may alter the mean and turbukent flow fields leading to destabilizing riverbed surface, under certain flow conditions. In particular, recent research on instream vegetation hydrodynamics and ecohydrogeomorphology has focused on how energetic flow structures and bulk flow parameters downstream a vegetation may result in riverbed destabilization. This study, demonstrated the application of a 20mm novel instrumented particle in recording entrainment rates downstream simulated vegetation patches of distinct densities, at various distances downstream these. A patch of 6mm acrilic cylinders is used to simulate the emergent vegetation having the same diameter (12cm) and different porosities or densities (void volume equal to 1.25%, 3.15%, 6.25%, 11.25%, and 17.25%). The flow velocity near the instrumented particle is recorded using acoustic Doppler velocimetry (ADV) with appropriate seeding, under clear water conditions. Preliminary results are presented with focus on the effect of vegetation patch density on the flow field and subsequent effects on particle entrainment rates and implications for bed surface destabilisation.</p>


2020 ◽  
Vol 20 (4) ◽  
pp. 1546-1553
Author(s):  
Yu Zhou ◽  
Jianhua Wu ◽  
Fei Ma ◽  
Jianyong Hu

Abstract In skimming flow, a uniform flow can be achieved and the flow depth, velocity and air concentration remain constant if a stepped spillway is sufficiently long. In this study, physical model experiments were performed to investigate the uniform characteristics and energy dissipation of a hydraulic-jump-stepped spillway, which is a new type of stepped spillway for increasing the unit discharge capacity and energy dissipation. Based on the redefinition of uniform flow, experimental results show that at a given stepped spillway slope, a smaller height for the beginning of the uniform flow region, a greater uniform aerated flow depth and a greater uniform equivalent clear water flow depth can be obtained as compared with the traditional stepped spillway due to strong aeration in the aeration basin. Under the condition of uniform flow, the energy dissipation rate of stepped spillways can be estimated by the equivalent clear water flow depth with given inflow conditions. Compared with the traditional stepped spillway, the uniform flow over the hydraulic-jump-stepped spillway has a smaller specific energy, revealing that the hydraulic-jump-stepped spillway is more advantageous for dissipating energy, especially at large unit discharges.


Sign in / Sign up

Export Citation Format

Share Document