scholarly journals Effect of L-shaped slots on scour around a bridge abutment

Author(s):  
Neveen Y. Saad ◽  
Ehab M. Fattouh ◽  
M. Mokhtar

Abstract Local scour is the most significant cause of bridge failure. Providing a short abutment with a straight slot has proved to be an effective method for reducing scour at this abutment. In this study, laboratory experiments have been conducted to investigate the effectiveness of using L-shaped slots in comparison to the commonly used straight slot, on the scour reduction at short vertical-wall abutment under clear-water flow conditions and uniform bed materials. The slots were just above the bed and their diameters equal to half the abutment's length. The results illustrated that it is essential to have a straight slot in any combination of slots, as any configuration without one is inefficient. Also, a combination of a straight slot with one side slot in the middle of the abutment's width gives better performance than an individual straight slot, as it reduces the depth, area, and volume of the scour hole by about 32.6, 26.8, and 43.6% respectively, in comparison to 23.2, 20.7, and 35.3% for the straight slot alone.

2007 ◽  
Vol 34 (4) ◽  
pp. 549-556 ◽  
Author(s):  
Şerife Yurdagül Kumcu ◽  
Mustafa Gögüş ◽  
Mehmet Ali Kökpinar

This study investigated the reduction of scour around a vertical-wall bridge abutment using rectangular collars for clear-water flow conditions over uniform sediment particles in a laboratory flume. Collars of different sizes and at different elevations were tested to determine the temporal variation of scour depth around the bridge abutment. The development of scour around the abutments with and without a collar for a time period of 6 h was studied, and observed scour depths were compared. Experimental results showed that, in addition to protecting the abutments against erosion, the addition of a collar is effective in reducing the rate of temporal scour development. A comparison of the present results with those from previous studies revealed that the effectiveness of a collar increases with a decrease in the elevation of the collar and an increase in the width of the collar.Key words: bridge abutment, collar, experimentation, hydraulics, scour, temporal variation.


Author(s):  
Dipankar Biswas ◽  
Steven A. Lottes ◽  
Pradip Majumdar ◽  
Milivoje Kostic

Bridges are a significant component of the ground transportation infrastructure in the United States. With about sixty percent of bridge failures due to hydraulic causes, primarily scour, application of computational fluid dynamics (CFD) analysis techniques to the assessment of risk of bridge failure under flood conditions can provide increased accuracy in scour risk assessment at a relatively low cost. The analysis can be used to make optimum use of limited federal and state funds available to maintain and replace bridges and ensure public safety while traveling on the nation’s roads and highways during and after floods. Scour is the erosion of riverbed material during high flow conditions, such as floods. When scouring of the supporting soil around the piers and abutments of bridges takes place, risk of bridge failure increases. A simulation methodology to conservatively predict equilibrium shape and size of the scour hole under pressure flow conditions for flooded bridge decks using commercial CFD software was developed. The computational methodology has been developed using C++ to compute changes in the bed contour outside of the CFD software and generate a re-meshing script to change the bed boundary contour. STAR-CD was used to run the hydrodynamic analysis to obtain bed shear stress, and a BASH script was developed to automate cycling between computing bed shear stress with the CFD software and computing changes in the bed contour due to scour predicted using the computed shear stress for the current bed contour. A single-phase moving boundary formulation has been developed to compute the equilibrium scour hole contour that proceeds through a series of quasi-steady CFD computations. It is based on CFD analysis of the flow fields around the flooded bridge deck and shear stress computed at the bed modeled as a rough wall. A high Reynolds number k-ε turbulence model with standard wall functions, based on a Reynolds-Averaged Navier-Stokes (RANS) turbulence model, was used to compute bed shear stress. The scour sites on the bed were identified as those sites where the computed shear stress exceeded the critical shear stress computed from a published correlation for flat bed conditions. Comparison with experimental data obtained from the Turner-Fairbank Highway Research Center (TFHRC), McLean, VA, USA, revealed larger discrepancies than anticipated between the bridge inundation ratio and the scour hole depth. Although scour hole slopes were small for the cases tested, a correction to critical shear stress to account for bed slope was also tested. It did not significantly improve the correlation between CFD prediction and experimental observations. These results may be a consequence of using only excess shear stress above critical as a criteria for scour when other physical mechanisms also contribute to the initiation of scour. Prediction of scour depth using federal guidelines over predicts scour depth by as much as an order of magnitude in some cases. Over prediction is acceptable for purposes of ensuring bridge safety. CFD methods for scour prediction can be a significant improvement of current methods as long as under prediction of scour depth is avoided. Conservative scour prediction using CFD methods can be achieved by using conservative values of parameters such as critical shear stress and effective bed roughness.


2006 ◽  
Vol 42 (10) ◽  
Author(s):  
Cristina Maria Sena Fael ◽  
Gonzalo Simarro-Grande ◽  
Juan-Pedro Martín-Vide ◽  
António Heleno Cardoso

2020 ◽  
Vol 47 (9) ◽  
pp. 1027-1036
Author(s):  
Müsteyde Baduna Koçyiğit ◽  
Önder Koçyiğit ◽  
Hüseyin Akay ◽  
Gülay Demir

This paper presents the results of an experimental study investigating the effect of skew angle on clear-water contraction scour under a bridge deck at partially and fully submerged flow conditions. Two bridge deck models without a pier, one of which was located perpendicular to the flow while the other one was located with skewness of 15°, were used in the study. Forty experiments were performed for each deck model, 24 of which were under partially submerged and 16 were under fully submerged flow conditions. Analysis of the experimental data showed that as the discharge and approach flow depth increased, the maximum scour hole depth under the skewed deck model increased up to 25%–66% for fully submerged flow and 17%–57% for partially submerged flow conditions. Furthermore, the effect of skew angle significantly enlarged the width of the scour hole as you move along the skewed deck.


Author(s):  
Maryam Khajavi ◽  
Seyed Mahmood Kashefipour ◽  
Mahmood Shafai Bejestan

The bridge abutment is one of the main parts of a bridge and significantly contributes to bridge stability. This study experimentally investigated the effect of the unsteadiness characteristics of hydrographs on the scouring phenomenon around the bridge abutment under clear water conditions. The ability of the permeable and impermeable spur dikes and their distances from the abutment at its upstream on the control of scouring around the bridge abutment was also investigated. The experimental observations imply that the effect of unsteady flow on the scouring process is relatively similar to the steady flow conditions. The results showed that the base time of hydrographs, the type of spur dikes, and the distance of spur dikes from the bridge abutment were the dominant parameters among the considered parameters in this study on the scouring process around the abutment. The results also revealed that the impermeable spur dike was able to completely eliminate scouring around the bridge abutment for two distances of 2L and 3L (where L is the abutment length) for both steady and unsteady flow conditions.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Müsteyde Baduna Koçyiğit ◽  
Onur Karakurt ◽  
Hüseyin Akay

AbstractThe effect of various parameters of flow, sediment and geometric features of the bridge on the depth and shape of the scour hole occurred underneath a bridge deck model without a pier was investigated by a series of experiments conducted in a flume under partially and fully submerged flow and clear water conditions. The experiments were performed with factors such as approach flow depth, discharge, sediment size, degree of submergence, girder location and depth. A total of 112 experiments were conducted for both partially and fully submerged flow conditions. The experimental data showed that the partially submerged flow increased the maximum depth of scour hole and affected the shape of the scour hole more when compared to the fully submerged flow. It was also noted that parameters that directly affected flow structure in the bridge opening such as girder height might significantly increase the maximum depth of scour hole. Effect of the distance between a single girder and the bridge edge was also tested by using three different girder location and it was found that as the distance increased, the depth of the scour hole decreased and the location of the maximum scour depth moved with the girder to where the contraction in the flow area occurred.


1984 ◽  
Vol 62 (8) ◽  
pp. 1548-1555 ◽  
Author(s):  
Pierre Magnan ◽  
Gérard J. FitzGerald

When brook charr, Salvelinus fontinalis Mitchill, are in allopatry in oligotrophic Québec lakes, they feed largely on macrobenthic invertebrates. However, when brook charr cooccur with creek chub, Semotilus atromaculatus Mitchill, they feed largely on zooplankton. In the present study, laboratory experiments showed that creek chub were more effective than brook charr in searching for hidden, patchily distributed prey. The searching efficiency of an individual chub feeding in a group was improved through social facilitation. In contrast, the high level of intraspecific aggression observed in brook charr prevents the formation of such feeding groups. In the laboratory, brook charr were able to displace creek chub from the food source because of interspecific aggression. Data are presented showing that chub are morphologically better adapted than charr to feed on benthos (subterminal orientation of the mouth and protrusible premaxillae), while the charr are better adapted than chub to feed on zooplankton (gill raker structure). Differences in feeding behaviour, morphology, and relative abundance between these species appear to be important in the observed niche shift of brook charr in nature.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1251 ◽  
Author(s):  
Su-Chin Chen ◽  
Samkele Tfwala ◽  
Tsung-Yuan Wu ◽  
Hsun-Chuan Chan ◽  
Hsien-Ter Chou

A new type of collar, the hooked-collar, was studied through experiments and numerical methods. Tests were conducted using a hooked collar of a width of 1.25b and a height of 0.25b, where b is the bridge-pier width. The hooked-collar efficiency was evaluated by testing different hooked-collar placements within the bridge-pier, which were compared to the bridge-pier without any collar. A double hooked-collar configuration, one placed at the bed level and the other buried 0.25b, was the most efficient at reducing the scour hole. In other cases, a hooked-collar positioned 0.25b above the bed slightly reduced the scour hole and had similar scour patterns when compared to the pier without the hooked-collar. The flow fields along the vertical symmetrical plane in the experiments are also presented. Laboratory experiments and numerical tests show that maximal downflow is highly reduced along with a corresponding decrease in horseshoe vortex strength for the experiments with the hooked-collar, compared to cases without the hooked-collar. The flow fields reveal that the maximum turbulent kinetic energy decreases with the installation of the hooked-collar.


2021 ◽  
Vol 65 (6) ◽  
pp. 477-487
Author(s):  
I. Yu. Kalashnikov ◽  
A. V. Dodin ◽  
I. V. Il’ichev ◽  
V. I. Krauz ◽  
V. M. Chechetkin

Abstract The use of Z-pinch facilities makes it possible to carry out well-controlled and diagnosable laboratory experiments to study laboratory jets with scaling parameters close to those of the jets from young stars. This makes it possible to observe processes that are inaccessible to astronomical observations. Such experiments are carried out at the PF-3 facility (“plasma focus,” Kurchatov Institute), in which the emitted plasma emission propagates along the drift chamber through the environment at a distance of one meter. The paper presents the results of experiments with helium, in which a successive release of two ejections was observed. An analysis of these results suggests that after the passage of the first supersonic ejection, a region with a low concentration is formed behind it, the so-called vacuum trace, due to which the subsequent ejection practically does not experience environmental resistance and propagates being collimated. The numerical modeling of the propagation of two ejections presented in the paper confirms this point of view. Using scaling laws and appropriate numerical simulations of astrophysical ejections, it is shown that this effect can also be significant for the jets of young stars.


Sign in / Sign up

Export Citation Format

Share Document