Importance of oceanic heat uptake in transient climate change

2006 ◽  
Vol 33 (17) ◽  
Author(s):  
Ronald J. Stouffer ◽  
Joellen Russell ◽  
Michael J. Spelman
2003 ◽  
Vol 16 (20) ◽  
pp. 3344-3356 ◽  
Author(s):  
Boyin Huang ◽  
Peter H. Stone ◽  
Andrei P. Sokolov ◽  
Igor V. Kamenkovich

2003 ◽  
Vol 16 (10) ◽  
pp. 1573-1582 ◽  
Author(s):  
Andrei P. Sokolov ◽  
Chris E. Forest ◽  
Peter H. Stone

Abstract The transient response of both surface air temperature and deep ocean temperature to an increasing external forcing strongly depends on climate sensitivity and the rate of the heat mixing into the deep ocean, estimates for both of which have large uncertainty. In this paper a method for estimating rates of oceanic heat uptake for coupled atmosphere–ocean general circulation models from results of transient climate change simulations is described. For models considered in this study, the estimates vary by a factor of 2½. Nevertheless, values of oceanic heat uptake for all models fall in the range implied by the climate record for the last century. It is worth noting that the range of the model values is narrower than that consistent with observations and thus does not provide a full measure of the uncertainty in the rate of oceanic heat uptake.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1494
Author(s):  
Bernardo Teufel ◽  
Laxmi Sushama

Fluvial flooding in Canada is often snowmelt-driven, thus occurs mostly in spring, and has caused billions of dollars in damage in the past decade alone. In a warmer climate, increasing rainfall and changing snowmelt rates could lead to significant shifts in flood-generating mechanisms. Here, projected changes to flood-generating mechanisms in terms of the relative contribution of snowmelt and rainfall are assessed across Canada, based on an ensemble of transient climate change simulations performed using a state-of-the-art regional climate model. Changes to flood-generating mechanisms are assessed for both a late 21st century, high warming (i.e., Representative Concentration Pathway 8.5) scenario, and in a 2 °C global warming context. Under 2 °C of global warming, the relative contribution of snowmelt and rainfall to streamflow peaks is projected to remain close to that of the current climate, despite slightly increased rainfall contribution. In contrast, a high warming scenario leads to widespread increases in rainfall contribution and the emergence of hotspots of change in currently snowmelt-dominated regions across Canada. In addition, several regions in southern Canada would be projected to become rainfall dominated. These contrasting projections highlight the importance of climate change mitigation, as remaining below the 2 °C global warming threshold can avoid large changes over most regions, implying a low likelihood that expensive flood adaptation measures would be necessary.


Sign in / Sign up

Export Citation Format

Share Document