transient climate change
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 3)

H-INDEX

25
(FIVE YEARS 0)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sang-Wook Yeh ◽  
Se-Yong Song ◽  
Richard P. Allan ◽  
Soon-Il An ◽  
Jongsoo Shin

AbstractThe hydrological cycle has a significant impact on human activities and ecosystems, so understanding its mechanisms with respect to a changing climate is essential. In particular, a more detailed understanding of hydrological cycle response to transient climate change is required for successful adaptation and mitigation policies. In this study, we exploit large ensemble model experiments using the Community Earth System Model version 1.2.2 (CESM1) in which CO2 concentrations increase steadily and then decrease along the same path. Our results show that precipitation changes in the CO2 increasing and decreasing phases are nearly symmetrical over land but asymmetric over oceans. After CO2 concentrations peak, the ocean continues to uptake heat from the atmosphere, which is a key process leading the hydrological cycle’s contrasting response over land and ocean. The symmetrical hydrological cycle response over land involves a complex interplay between rapid responses to CO2 and slower responses to ensuing warming. Therefore, the surface energy constraints lead to the contrasting hydrological response over land and ocean to CO2 forcing that needs to be verified and considered in climate change mitigation and adaption actions.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1494
Author(s):  
Bernardo Teufel ◽  
Laxmi Sushama

Fluvial flooding in Canada is often snowmelt-driven, thus occurs mostly in spring, and has caused billions of dollars in damage in the past decade alone. In a warmer climate, increasing rainfall and changing snowmelt rates could lead to significant shifts in flood-generating mechanisms. Here, projected changes to flood-generating mechanisms in terms of the relative contribution of snowmelt and rainfall are assessed across Canada, based on an ensemble of transient climate change simulations performed using a state-of-the-art regional climate model. Changes to flood-generating mechanisms are assessed for both a late 21st century, high warming (i.e., Representative Concentration Pathway 8.5) scenario, and in a 2 °C global warming context. Under 2 °C of global warming, the relative contribution of snowmelt and rainfall to streamflow peaks is projected to remain close to that of the current climate, despite slightly increased rainfall contribution. In contrast, a high warming scenario leads to widespread increases in rainfall contribution and the emergence of hotspots of change in currently snowmelt-dominated regions across Canada. In addition, several regions in southern Canada would be projected to become rainfall dominated. These contrasting projections highlight the importance of climate change mitigation, as remaining below the 2 °C global warming threshold can avoid large changes over most regions, implying a low likelihood that expensive flood adaptation measures would be necessary.


2018 ◽  
Vol 6 (11) ◽  
pp. 1498-1507 ◽  
Author(s):  
D. Stammer ◽  
A. Bracco ◽  
P. Braconnot ◽  
G. P. Brasseur ◽  
S. M. Griffies ◽  
...  

2017 ◽  
Vol 114 (36) ◽  
pp. E7415-E7424 ◽  
Author(s):  
Charles G. Bardeen ◽  
Rolando R. Garcia ◽  
Owen B. Toon ◽  
Andrew J. Conley

Climate simulations that consider injection into the atmosphere of 15,000 Tg of soot, the amount estimated to be present at the Cretaceous−Paleogene boundary, produce what might have been one of the largest episodes of transient climate change in Earth history. The observed soot is believed to originate from global wildfires ignited after the impact of a 10-km-diameter asteroid on the Yucatán Peninsula 66 million y ago. Following injection into the atmosphere, the soot is heated by sunlight and lofted to great heights, resulting in a worldwide soot aerosol layer that lasts several years. As a result, little or no sunlight reaches the surface for over a year, such that photosynthesis is impossible and continents and oceans cool by as much as 28 °C and 11 °C, respectively. The absorption of light by the soot heats the upper atmosphere by hundreds of degrees. These high temperatures, together with a massive injection of water, which is a source of odd-hydrogen radicals, destroy the stratospheric ozone layer, such that Earth’s surface receives high doses of UV radiation for about a year once the soot clears, five years after the impact. Temperatures remain above freezing in the oceans, coastal areas, and parts of the Tropics, but photosynthesis is severely inhibited for the first 1 y to 2 y, and freezing temperatures persist at middle latitudes for 3 y to 4 y. Refugia from these effects would have been very limited. The transient climate perturbation ends abruptly as the stratosphere cools and becomes supersaturated, causing rapid dehydration that removes all remaining soot via wet deposition.


2016 ◽  
Vol 29 (11) ◽  
pp. 4251-4268 ◽  
Author(s):  
Brian E. J. Rose ◽  
M. Cameron Rencurrel

Abstract Changes in column-integrated water vapor (Q) in response to increased CO2 and ocean heat uptake (OHU) are investigated in slab-ocean aquaplanet simulations. The simulations span a wide range of warming and moistening patterns due to the spatial structures of the imposed OHU. Fractional changes in Q per degree of surface warming range from 0% to 20% K−1 locally and from 3.6% to 11% K−1 globally. A new diagnostic technique decomposes these changes into relative humidity (RH), surface temperature, and lapse rate contributions. Single-column calculations demonstrate substantial departures from apparent (surface temperature based) Clausius–Clapeyron (CC) scaling due to lapse rates changes; a moist-adiabatic column with fixed, uniform RH exceeds the CC rate by 2.5% K−1. The RH contribution is very small in most simulations. The various Q scalings are thus all consistent CC, but result from different patterns of polar amplification and lapse rate change. Lapse rates are sensitive to location and magnitude of OHU, with implications for Q under transient climate change. CO2 with subpolar (tropical) OHU results in higher (lower) Q scalings than CO2 alone. The weakest Q scaling (and largest RH effects) is found for increased poleward ocean heat transport, which causes strongly polar-amplified warming and near-zero tropical temperature change. Despite weak RH changes and fidelity to the CC relation, Q is expected to vary widely on different time scales in nature due to sensitivity of lapse rates to OHU along with the nonlinearity of the diagnostics.


2016 ◽  
Vol 43 (8) ◽  
pp. 3935-3943 ◽  
Author(s):  
D. S. Trossman ◽  
J. B. Palter ◽  
T. M. Merlis ◽  
Y. Huang ◽  
Y. Xia

Author(s):  
Joseph D. Majkut ◽  
Brendan R. Carter ◽  
Thomas L. Frölicher ◽  
Carolina O. Dufour ◽  
Keith B. Rodgers ◽  
...  

The Southern Ocean is critically important to the oceanic uptake of anthropogenic CO 2 . Up to half of the excess CO 2 currently in the ocean entered through the Southern Ocean. That uptake helps to maintain the global carbon balance and buffers transient climate change from fossil fuel emissions. However, the future evolution of the uptake is uncertain, because our understanding of the dynamics that govern the Southern Ocean CO 2 uptake is incomplete. Sparse observations and incomplete model formulations limit our ability to constrain the monthly and annual uptake, interannual variability and long-term trends. Float-based sampling of ocean biogeochemistry provides an opportunity for transforming our understanding of the Southern Ocean CO 2 flux. In this work, we review current estimates of the CO 2 uptake in the Southern Ocean and projections of its response to climate change. We then show, via an observational system simulation experiment, that float-based sampling provides a significant opportunity for measuring the mean fluxes and monitoring the mean uptake over decadal scales.


Sign in / Sign up

Export Citation Format

Share Document