scholarly journals Comparison of fluid tiltmeter data with long-period seismograms: Surface waves and Earth's free oscillations

2006 ◽  
Vol 111 (B11) ◽  
pp. n/a-n/a ◽  
Author(s):  
A. M. G. Ferreira ◽  
N. F. d'Oreye ◽  
J. H. Woodhouse ◽  
W. Zürn
2020 ◽  
Vol 91 (4) ◽  
pp. 2234-2246
Author(s):  
Hang Li ◽  
Jianqiao Xu ◽  
Xiaodong Chen ◽  
Heping Sun ◽  
Miaomiao Zhang ◽  
...  

Abstract Inversion of internal structure of the Earth using surface waves and free oscillations is a hot topic in seismological research nowadays. With the ambient noise data on seismically quiet days sourced from the gravity tidal observations of seven global distributed superconducting gravimeters (SGs) and the seismic observations for validation from three collocated STS-1 seismometers, long-period surface waves and background free oscillations are successfully extracted by the phase autocorrelation (PAC) method, respectively. Group-velocity dispersion curves at the frequency band of 2–7.5 mHz are extracted and compared with the theoretical values calculated with the preliminary reference Earth model. The comparison shows that the best observed values differ about ±2% from the corresponding theoretical results, and the extracted group velocities of the best SG are consistent with the result of the collocated STS-1 seismometer. The results indicate that reliable group-velocity dispersion curves can be measured with the ambient noise data from SGs. Furthermore, the fundamental frequency spherical free oscillations of 2–7 mHz are also clearly extracted using the same ambient noise data. The results in this study show that the SG, besides the seismometer, is proved to be another kind of instrument that can be used to observe long-period surface waves and free oscillations on seismically quiet days with a high degree of precision using the PAC method. It is worth mentioning that the PAC method is first and successfully introduced to analyze SG observations in our study.


2018 ◽  
Vol 481 (3) ◽  
pp. 315-319
Author(s):  
S. Ermolenko ◽  
◽  
G. Golitsyn ◽  
A. Kukushkina ◽  
G. Shved ◽  
...  

2012 ◽  
Vol 707 ◽  
pp. 482-495 ◽  
Author(s):  
Ofer Manor ◽  
Leslie Y. Yeo ◽  
James R. Friend

AbstractThe classical Schlichting boundary layer theory is extended to account for the excitation of generalized surface waves in the frequency and velocity amplitude range commonly used in microfluidic applications, including Rayleigh and Sezawa surface waves and Lamb, flexural and surface-skimming bulk waves. These waves possess longitudinal and transverse displacements of similar magnitude along the boundary, often spatiotemporally out of phase, giving rise to a periodic flow shown to consist of a superposition of classical Schlichting streaming and uniaxial flow that have no net influence on the flow over a long period of time. Correcting the velocity field for weak but significant inertial effects results in a non-vanishing steady component, a drift flow, itself sensitive to both the amplitude and phase (prograde or retrograde) of the surface acoustic wave propagating along the boundary. We validate the proposed theory with experimental observations of colloidal pattern assembly in microchannels filled with dilute particle suspensions to show the complexity of the boundary layer, and suggest an asymptotic slip boundary condition for bulk flow in microfluidic applications that are actuated by surface waves.


1995 ◽  
Vol 85 (3) ◽  
pp. 716-735 ◽  
Author(s):  
John F. Cassidy ◽  
Garry C. Rogers

Abstract On 6 April 1992, a magnitude 6.8 (MS) earthquake occurred in the triple-junction region at the northern end of the Cascadia subduction zone. This was the largest earthquake in at least 75 yr to occur along the 110-km-long Revere-Dellwood-Wilson (RDW) transform fault and the first large earthquake in this region recorded by modern broadband digital seismic networks. It thus provides an opportunity to examine the rupture process along a young (<2 Ma) oceanic transform fault and to gain better insight into the tectonics of this triple-junction region. We have investigated the source parameters and the rupture process of this earthquake by modeling broadband body waves and long-period surface waves and by accurately locating the mainshock and the first 10 days of aftershocks using a well-located “calibration” event recorded during an ocean-bottom seismometer survey. Analysis of P and SH waveforms reveals that this was a complex rupture sequence consisting of three strike-slip subevents in 12 sec. The initial rupture occurred 5 to 6 km to the SW of the seafloor trace of the RDW fault at 50.55° N, 130.46° W. The dominant subevent occurred 2 to 3 sec later and 4.3 km beneath the seafloor trace of the RDW fault, and a third subevent occurred 5 sec later, 18 km to the NNW, suggesting a northwestward propagating rupture. The aftershock sequence extended along a 60- to 70-km-long segment of the RDW fault, with the bulk of the activity concentrated ∼30 to 40 km to the NNW of the epicenter, consistent with this interpretation. The well-constrained mechanism of the initial rupture (strike/dip/slip 339°/90°/−168°) and of the largest aftershock (165°/80°/170°) are rotated 15° to 20° clockwise relative to the seafloor trace of the RDW fault but are parallel to the Pacific/North America relative plate motion vector. In contrast, the mechanisms of the dominant subevent (326°/87°/−172°), and the long-period solution derived from surface waves aligns with the RDW fault. This suggests that small earthquakes (M < 6) in this area occur along faults that are optimally aligned with respect to the regional stress field, whereas large earthquakes, involving tens of kilometers of rupture, activate the RDW fault. For the mainshock, we estimate a seismic moment (from surface waves) of 1.0 × 1026 dyne-cm, a stress drop of 60 bars, and an average slip of 1.2 m. This represents only 21 yr of strain accumulation, implying that there is either a significant amount of aseismic slip along the RDW fault or that much of the strain accumulation manifests itself as deformation within the Dellwood and Winona blocks or along the continental margin.


1994 ◽  
Vol 116 (1) ◽  
pp. 205-216 ◽  
Author(s):  
Michael H. Ritzwoller ◽  
Eugene M. Lavely

1991 ◽  
Vol 81 (5) ◽  
pp. 1900-1922
Author(s):  
Arthur Frankel ◽  
Susan Hough ◽  
Paul Friberg ◽  
Robert Busby

Abstract A small aperture (≈300 m), four-station array was deployed in Sunnyvale, California for 5 days to record aftershocks of the Loma Prieta earthquake of October 1989. The purpose of the array was to study the seismic response of the alluvium-filled Santa Clara Valley and the role of surface waves in the seismic shaking of sedimentary basins. Strong-motion records of the Loma Prieta mainshock indicate that surface waves produced the peak velocities and displacements at some sites in the Santa Clara Valley. We use the recordings from the dense array to determine the apparent velocity and azimuth of propagation for various arrivals in the seismograms of four aftershocks with magnitudes between 3.6 and 4.4. Apparent velocities are generally observed to decrease with increasing time after the S wave in the seismograms. Phases arriving less than about 8 sec after the S wave have apparent velocities comparable to the S wave and appear to be body waves multiply reflected under the receiver site or reflected by crustal interfaces. For times 10 to 30 sec after the direct S wave, we observe long-period (1 to 6 sec) arrivals with apparent velocities decreasing from 2.5 to 0.8 km / sec. We interpret these arrivals to be surface waves and conclude that these surface waves produce the long duration of shaking observed on the aftershock records. Much of the energy in the 40 sec after the S-wave is coming approximately from the direction of the source, although some arrivals have backazimuths as much as 60° different from the backazimuths to the epicenters. Two of the aftershocks show arrivals coming from 30 to 40° more easterly than the epicenters. This energy may have been scattered from outcrops along the southeastern edge of the basin. In contrast, the deepest aftershock studied (d = 17 km) displays later arrivals with backazimuths 30 to 40° more westerly than the epicenter. A distinct arrival for one of the aftershocks propagates from the southwest, possibly scattered from the western edge of the basin. Synthetic seismograms derived from a plane-layered crustal model do not produce the long-period Love waves observed in the waveforms of the ML 4.4 aftershock. These Love waves may be generated by the conversion of incident S waves or Rayleigh waves near the edge of the basin.


Sign in / Sign up

Export Citation Format

Share Document