The rupture process and aftershock distribution of the 6 April 1992 MS 6.8 earthquake, Offshore British Columbia

1995 ◽  
Vol 85 (3) ◽  
pp. 716-735 ◽  
Author(s):  
John F. Cassidy ◽  
Garry C. Rogers

Abstract On 6 April 1992, a magnitude 6.8 (MS) earthquake occurred in the triple-junction region at the northern end of the Cascadia subduction zone. This was the largest earthquake in at least 75 yr to occur along the 110-km-long Revere-Dellwood-Wilson (RDW) transform fault and the first large earthquake in this region recorded by modern broadband digital seismic networks. It thus provides an opportunity to examine the rupture process along a young (<2 Ma) oceanic transform fault and to gain better insight into the tectonics of this triple-junction region. We have investigated the source parameters and the rupture process of this earthquake by modeling broadband body waves and long-period surface waves and by accurately locating the mainshock and the first 10 days of aftershocks using a well-located “calibration” event recorded during an ocean-bottom seismometer survey. Analysis of P and SH waveforms reveals that this was a complex rupture sequence consisting of three strike-slip subevents in 12 sec. The initial rupture occurred 5 to 6 km to the SW of the seafloor trace of the RDW fault at 50.55° N, 130.46° W. The dominant subevent occurred 2 to 3 sec later and 4.3 km beneath the seafloor trace of the RDW fault, and a third subevent occurred 5 sec later, 18 km to the NNW, suggesting a northwestward propagating rupture. The aftershock sequence extended along a 60- to 70-km-long segment of the RDW fault, with the bulk of the activity concentrated ∼30 to 40 km to the NNW of the epicenter, consistent with this interpretation. The well-constrained mechanism of the initial rupture (strike/dip/slip 339°/90°/−168°) and of the largest aftershock (165°/80°/170°) are rotated 15° to 20° clockwise relative to the seafloor trace of the RDW fault but are parallel to the Pacific/North America relative plate motion vector. In contrast, the mechanisms of the dominant subevent (326°/87°/−172°), and the long-period solution derived from surface waves aligns with the RDW fault. This suggests that small earthquakes (M < 6) in this area occur along faults that are optimally aligned with respect to the regional stress field, whereas large earthquakes, involving tens of kilometers of rupture, activate the RDW fault. For the mainshock, we estimate a seismic moment (from surface waves) of 1.0 × 1026 dyne-cm, a stress drop of 60 bars, and an average slip of 1.2 m. This represents only 21 yr of strain accumulation, implying that there is either a significant amount of aseismic slip along the RDW fault or that much of the strain accumulation manifests itself as deformation within the Dellwood and Winona blocks or along the continental margin.

1991 ◽  
Vol 81 (5) ◽  
pp. 1900-1922
Author(s):  
Arthur Frankel ◽  
Susan Hough ◽  
Paul Friberg ◽  
Robert Busby

Abstract A small aperture (≈300 m), four-station array was deployed in Sunnyvale, California for 5 days to record aftershocks of the Loma Prieta earthquake of October 1989. The purpose of the array was to study the seismic response of the alluvium-filled Santa Clara Valley and the role of surface waves in the seismic shaking of sedimentary basins. Strong-motion records of the Loma Prieta mainshock indicate that surface waves produced the peak velocities and displacements at some sites in the Santa Clara Valley. We use the recordings from the dense array to determine the apparent velocity and azimuth of propagation for various arrivals in the seismograms of four aftershocks with magnitudes between 3.6 and 4.4. Apparent velocities are generally observed to decrease with increasing time after the S wave in the seismograms. Phases arriving less than about 8 sec after the S wave have apparent velocities comparable to the S wave and appear to be body waves multiply reflected under the receiver site or reflected by crustal interfaces. For times 10 to 30 sec after the direct S wave, we observe long-period (1 to 6 sec) arrivals with apparent velocities decreasing from 2.5 to 0.8 km / sec. We interpret these arrivals to be surface waves and conclude that these surface waves produce the long duration of shaking observed on the aftershock records. Much of the energy in the 40 sec after the S-wave is coming approximately from the direction of the source, although some arrivals have backazimuths as much as 60° different from the backazimuths to the epicenters. Two of the aftershocks show arrivals coming from 30 to 40° more easterly than the epicenters. This energy may have been scattered from outcrops along the southeastern edge of the basin. In contrast, the deepest aftershock studied (d = 17 km) displays later arrivals with backazimuths 30 to 40° more westerly than the epicenter. A distinct arrival for one of the aftershocks propagates from the southwest, possibly scattered from the western edge of the basin. Synthetic seismograms derived from a plane-layered crustal model do not produce the long-period Love waves observed in the waveforms of the ML 4.4 aftershock. These Love waves may be generated by the conversion of incident S waves or Rayleigh waves near the edge of the basin.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Hossein Sadeghi ◽  
Sadaomi Suzuki

AbstractOn November 11, 2018, an event generating long-lasting, monotonic long-period surface waves was observed by seismographs around the world. This event occurred at around 09:28 UTC east of the Mayotte Island, in the Indian Ocean off the coast of East Africa. This event is unusual due to the absence of body waves in the seismograms and no feeling of earth shaking by people locally. The purpose of this study is to investigate this unusual event using the waveforms recorded by 26 stations of the Iranian National Broadband Seismic Network. The stations are located at epicentral distances ranging from 4542 to 5772 km north-northeast of the event’s epicenter. The arrival of monochromatic long-period signals is visible around 10 UTC in the recordings of all the stations and the signals lasted for more than 30 min. Frequency analysis of the seismograms shows a clear peak at 0.064 Hz (15.6 s/cycle). The maximum amplitude of the transverse components is less than a half of the radial components. This is in agreement with the theoretical radiation pattern of Rayleigh and Love waves at a frequency of 0.06 Hz for a vertical compensated linear vector dipole source mechanism. The average apparent phase velocities were calculated as 3.31 and 2.97 km/s, in the transverse and radial directions, corresponding, respectively, to Love and Rayleigh waves in the frequency range of 0.05–0.07 Hz. A surface wave magnitude of Ms 5.07 ± 0.22 was estimated. Just before the monochromatic signal arrives, there is some dispersion in the surface waves. This observation may suggest a regular earthquake of Ms 4.3 ± 0.11 that triggered the November 11, 2018, event. The difference between the arrival times of the recorded surface waves of the two events is estimated to be less than 31 s, and most likely of ~ 7 s only.


2020 ◽  
Author(s):  
Hossein Sadeghi ◽  
Sadaomi Suzuki

Abstract On November 11, 2018, an event generating long-lasting, monotonic long-period surface waves was observed by seismographs around the world. This event occurred at around 09:30 (UTC) east of the Mayotte Island, east Africa. This event is unusual due to the absence of body waves in the seismograms and people’s lack of sense. The purpose of this study is to investigate this unusual event using the waveforms recorded by the Iranian National Broadband Seismic Network. The network consisted of 26 stations in operation on November 11, 2018. The stations are located from 4542 km to 5772 km north-northeast of the event’s epicentre. The arrival of monochromatic long-period signals is visible around 10 UTC in the recordings of all the stations and lasts for more than 30 minutes. Frequency analysis of the seismograms shows a clear peak at 0.064 Hz (15.6 sec/cycle). The maximum amplitude of the transverse components is less than a half of the radial components. This is in agreement with the theoretical radiation pattern of Rayleigh and Love waves at a frequency of 0.06 Hz from a vertical Compensated Linear Vector Dipole (CLVD) source mechanism. The average apparent phase velocities are calculated as 3.31 km/s and 2.97 km/s, in the transverse and radial directions, corresponding respectively to the Love and Rayleigh waves in the range of 0.05 to 0.07 Hz. The surface wave magnitude of Ms 5.07 ± 0.22 was estimated. Just before the monochromatic signal, there is some dispersion in the surface waves. This observation may suggest a regular earthquake that triggered the strange Mayotte event.


1992 ◽  
Vol 82 (6) ◽  
pp. 2368-2390
Author(s):  
Carol J. Bryan

Abstract Examination of short-period seismic data from the ML = 6.1 Kilauea south flank earthquake and aftershock sequence indicates that the rupture process in large Hawaiian earthquakes is more complex than previously modeled. In contrast to the low-angle thrust solution determined for the mainshock from long-period teleseismic body waves by other workers, I find an intermediate- to high-angle reverse solution; I find, however, that focal mechanisms for coastal aftershocks of ML > 3.0 are similar to the teleseismic mechanism for the mainshock. A difference in focal mechanisms determined from short-period local-network seismic data and from long-period teleseismic data has been noted for other recent large Hawaiian earthquakes. Both the mapping of surface cracks and the focal mechanism derived from short-period seismic data for the ML = 6.6 1983 Kaoiki earthquake show strike-slip motion, whereas the centroid moment tensor solution shows low-angle thrusting. The focal mechanism calculated from short-period seismic data for the ML = 7.2 1975 Kalapana mainshock shows low-angle thrusting according to some workers, but intermediate- to high-angle reverse faulting according to others, whereas focal mechanisms calculated from long-period seismic data show low-angle thrusting. This result suggests that rupture initiation in large Hawaiian earthquakes, as represented by the short-period focal mechanisms, differs significantly from the overall rupture process, as represented by the teleseismic mechanisms. I propose that small earthquakes trigger the large-scale energy release at the bases of the volcanic edifices, the type of energy release often observed in large Hawaiian earthquakes. These triggering events may occur along rupture surfaces that differ from those along which the long-period moment release occurs and thus may represent release of a local stress concentration superposed upon the regional stress field.


2020 ◽  
Author(s):  
Hossein Sadeghi ◽  
Sadaomi Suzuki

<p>The 11 November 2018 Mayotte event was first introduced in the media by Maya Wei-Haas (2018) on National Geographic Magazine as a strange earthquake of which seismic waves were recorded by instruments around the world, but unusually nobody felt them. The Mayotte event in the absence of body waves caused long-duration, long-period surface waves traveling around the globe. Cesca et al. (2020) by analyzing regional and global seismic and deformation data suggested drainage of a deep magma reservoir. Tono Research Institute of Earthquake Science recorded the data with the broadband seismometer (STS-1) and gravimeter (gPhone) installed in Mizunami, Japan (Murakami et al., 2019). The records by Iranian broadband stations clearly showed the long-period seismic signals around 10 (UTC) on November 11, 2018. We studied records by 26 stations distributed throughout the country. The stations are operated by National Center of Broadband Seismic Network of Iran, International Institute of Earthquake Engineering and Seismology (IIEES). Since the frequency content of Fourier amplitude spectra appeared the signal of the surface waves as a peak around 0.06 Hz, we applied a bandpass filter of 0.05-0.07 Hz to the waveform data. To separate Rayleigh from love in surface waves, the filtered horizontal components were rotated to the radial and transverse components based on an assumed epicenter location at the latitude of 12.7S and longitude of 45.4E degrees. The stations considered as an array and the investigation was carried out in two ways. First, the position of each station was taken as the reference point of the array coordinate, and arrival delay times at the other stations relative to the reference were calculated. The phase velocity and the back-azimuth of each station were estimated through the least-square regression method. The estimated back azimuths were within 13 degrees from the back azimuths from the assumed epicenter. The average phase velocity for Rayleigh and Love phases are calculated as 2.97 and 3.31 km/sec, respectively. Second, we applied semblance analysis to six stations with the shortest spacing distances. However, the distance between the adjacent stations relative to the signal wavelength was not enough short to prevent spatial aliasing. Nevertheless, the interesting was that the semblance results were different for radial and transverse components. We calculated surface-wave magnitude (Ms) for the event and a number of recorded earthquakes occurring in the Mayotte area from May 13 to June 1, 2018. Linear regression was used to define relationships between the calculated Ms and the USGS body-wave magnitude (mb) and the local magnitude by BRGM catalog (Bertil et al. , 2019), and the moment magnitude (Mw) from the CMT solutions of HRVD and USGS.</p>


2012 ◽  
Vol 707 ◽  
pp. 482-495 ◽  
Author(s):  
Ofer Manor ◽  
Leslie Y. Yeo ◽  
James R. Friend

AbstractThe classical Schlichting boundary layer theory is extended to account for the excitation of generalized surface waves in the frequency and velocity amplitude range commonly used in microfluidic applications, including Rayleigh and Sezawa surface waves and Lamb, flexural and surface-skimming bulk waves. These waves possess longitudinal and transverse displacements of similar magnitude along the boundary, often spatiotemporally out of phase, giving rise to a periodic flow shown to consist of a superposition of classical Schlichting streaming and uniaxial flow that have no net influence on the flow over a long period of time. Correcting the velocity field for weak but significant inertial effects results in a non-vanishing steady component, a drift flow, itself sensitive to both the amplitude and phase (prograde or retrograde) of the surface acoustic wave propagating along the boundary. We validate the proposed theory with experimental observations of colloidal pattern assembly in microchannels filled with dilute particle suspensions to show the complexity of the boundary layer, and suggest an asymptotic slip boundary condition for bulk flow in microfluidic applications that are actuated by surface waves.


2006 ◽  
Vol 111 (B11) ◽  
pp. n/a-n/a ◽  
Author(s):  
A. M. G. Ferreira ◽  
N. F. d'Oreye ◽  
J. H. Woodhouse ◽  
W. Zürn

Geophysics ◽  
2021 ◽  
pp. 1-84
Author(s):  
Chunying Yang ◽  
Wenchuang Wang

Irregular acquisition geometry causes discontinuities in the appearance of surface wave events, and a large offset causes seismic records to appear as aliased surface waves. The conventional method of sampling data affects the accuracy of the dispersion spectrum and reduces the resolution of surface waves. At the same time, ”mode kissing” of the low-velocity layer and inhomogeneous scatterers requires a high-resolution method for calculating surface wave dispersion. This study tested the use of the multiple signal classification (MUSIC) algorithm in 3D multichannel and aliased wavefield separation. Azimuthal MUSIC is a useful method to estimate the phase velocity spectrum of aliased surface wave data, and it represent the dispersion spectra of low-velocity and inhomogeneous models. The results of this study demonstrate that mode-kissing affects dispersion imaging, and inhomogeneous scatterers change the direction of surface-wave propagation. Surface waves generated from the new propagation directions are also dispersive. The scattered surface wave has a new dispersion pattern different to that of the entire record. Diagonal loading was introduced to improve the robustness of azimuthal MUSIC, and numerical experiments demonstrate the resultant effectiveness of imaging aliasing surface waves. A phase-matched filter was applied to the results of azimuthal MUSIC, and phase iterations were unwrapped in a fast and stable manner. Aliased surface waves and body waves were separated during this process. Overall, field data demonstrate that azimuthal MUSIC and phase-matched filters can successfully separate aliased surface waves.


1983 ◽  
Vol 73 (2) ◽  
pp. 593-613
Author(s):  
Terry C. Wallace ◽  
Donald V. Helmberger ◽  
Gladys R. Engen

abstract In this paper, we study the long-period body waves at regional and upper mantle distances from large underground nuclear explosions at Pahute Mesa, Nevada Test Site. A comparison of the seismic records from neighboring explosions shows that the more recent events have much simpler waveforms than those of the earlier events. In fact, many of the early events produced waveforms which are very similar to those produced by shallow, moderate-size, strike-slip earthquakes; the phase sP is particularly obvious. The waveforms of these explosions can be modeled by assuming that the explosion is accompanied by tectonic release represented by a double couple. A clear example of this phenomenon is provided by a comparison of GREELEY (1966) and KASSERI (1975). These events are of similar yields and were detonated within 2 km of each other. The GREELEY records can be matched by simply adding synthetic waveforms appropriate for a shallow strike-slip earthquake to the KASSERI observations. The tectonic release for GREELEY has a moment of 5 ՠ1024 dyne-cm and is striking approximately 340°. The identification of the sP phase at upper mantle distances indicates that the source depth is 4 km or less. The tectonic release time function has a short duration (less than 1 sec). A comparison of these results with well-studied strike-slip earthquakes on the west coast and eastern Nevada indicate that, if tectonic release is triggered fault motion, then the tectonic release is relatively high stress drop, on the order of several hundred bars. It is possible to reduce these stress drops by a factor of 2 if the tectonic release is a driven fault; i.e., rupturing with the P velocity. The region in which the stress is released for a megaton event has a radius of about 4 km. Pahute Mesa events which are detonated within this radius of a previous explosion have a substantially reduced tectonic release.


Sign in / Sign up

Export Citation Format

Share Document