scholarly journals Sea surface temperature signatures of oceanic internal waves in low winds

Author(s):  
J. Thomas Farrar ◽  
Christopher J. Zappa ◽  
Robert A. Weller ◽  
Andrew T. Jessup
2020 ◽  
Author(s):  
Olga Lavrova ◽  
Andrey Kostianoy

<p>Internal waves (IWs) are an intrinsic feature of all density stratified water bodies: oceans, seas, lakes and reservoirs. IWs occur due to various causes. Among them are tides and inertial motions, variations in atmospheric pressure and wind, underwater earthquakes, water flows over bottom topography, anthropogenic factors, etc. In coastal areas of oceans and tidal seas,  IWs induced by tidal currents over shelf edge predominate. Such IWs are well-studied in multiple field, laboratory and numerical experiments. However, the data on IWs in non-tidal seas, such as the Black, Baltic and Caspian Seas, are scarce. Meanwhile, our multi-year satellite observations prove IWs to be quite a characteristic hydrophysical phenomenon of the Caspian Sea. The sea is considered non-tidal because tide height does not exceed 12 cm at the coastline. And yet surface manifestations of IWs are regularly observed in satellite data, both radar and visible. The goal of our study was to reveal spatial, seasonal and interannual variability of IW surface manifestations in the Caspian Sea in the periods of 1999-2012 and 2018-2019 from the analysis of satellite data. All available satellite radar and visible data were used, that is data from ERS1/2 SAR; Envisat ASAR; Sentinel-1A,1B SAR-C; Landsat-4,5 TM; Landsat-7 ETM+; Landsat-8 OLI; Sentinel-2A,2B MSI sensors. During the year, IWs were observed from the beginning of May to mid-September. In certain years, depending on hydrometeorological conditions, such as water heating, wind field, etc., no IWs could be seen in May or September. IWs regularly occur in the east of Middle Caspian and in the northeast of South Caspian. In North Caspian, due to its shallowness and absence of pronounced stratification, IWs are not generated, at least their surface signatures cannot be found in satellite data. In the west of the sea, IWs are scarcely observed, primarily at the beginning of the summer season. IW trains propagate toward the coast, their generation sites are mainly over the depths of 50-200 m.</p><p>According to the available data for the studied periods, the time of the first appearance of IW signatures differs significantly from year to year. For example, in 1999 and 2000 it happened only in July.</p><p>Since no in situ measurements were conducted in the sites of regular IW manifestations, an attempt  was made to establish the dependence of IW occurrence frequency  on seasonal and interannual variations of sea surface temperature, an indirect indicator of the depth of the diurnal or seasonal thermocline, that is where IW were generated. Sea surface temperature was also estimated from satellite data.</p><p>Another issue addressed in the work was the differentiation between the sea surface signatures of IWs in the atmosphere and the sea. The Caspian Sea is known for their close similarity in spatial characteristics.</p><p>The work was carried out with financial support of the Russian Science Foundation grant #19-77-20060.  Processing of satellite data was carried out by Center for Collective Use “IKI-Monitoring” with the use of “See The Sea” system, that was implemented in frame of Theme “Monitoring”, State register No. 01.20.0.2.00164.</p>


2017 ◽  
Vol 51 (4) ◽  
pp. e9-e14 ◽  
Author(s):  
Hiroto Kajita ◽  
Atsuko Yamazaki ◽  
Takaaki Watanabe ◽  
Chung-Che Wu ◽  
Chuan-Chou Shen ◽  
...  

2019 ◽  
Vol 3 ◽  
pp. 929
Author(s):  
Marianus Filipe Logo ◽  
N M. R. R. Cahya Perbani ◽  
Bayu Priyono

Provinsi Nusa Tenggara Timur (NTT) merupakan penghasil rumput laut kappaphycus alvarezii kedua terbesar di Indonesia berdasarkan data Badan Pusat Statistik (2016). Oleh karena itu diperlukan zonasi daerah potensial budidaya rumput laut kappaphycus alvarezii untuk pengembangan lebih lanjut. Penelitian ini bertujuan untuk menentukan daerah yang potensial untuk budidaya rumput laut kappaphycus alvarezii di Provinsi NTT berdasarkan parameter sea surface temperature (SST), salinitas, kedalaman, arus, dissolved oxygen (DO), nitrat, fosfat, klorofil-a, dan muara sungai. Penentuan kesesuaian lokasi budidaya dilakukan dengan memberikan bobot dan skor bagi setiap parameter untuk budidaya rumput laut kappaphycus alvarezii menggunakan sistem informasi geografis melalui overlay peta tematik setiap parameter. Dari penelitian ini diperoleh bahwa kadar nitrat, arus, kedalaman, dan lokasi muara sungai menjadi parameter penentu utama. Jarak maksimum dari bibir pantai adalah sekitar 10 km. Potensial budidaya rumput laut kappaphycus alvarezii ditemukan di Pulau Flores bagian barat, kepulauan di Kabupaten Flores Timur dan Alor, selatan Pulau Sumba, Pulau Rote, dan Teluk Kupang.


Author(s):  
Diaz Juan Navia ◽  
Diaz Juan Navia ◽  
Bolaños Nancy Villegas ◽  
Bolaños Nancy Villegas ◽  
Igor Malikov ◽  
...  

Sea Surface Temperature Anomalies (SSTA), in four coastal hydrographic stations of Colombian Pacific Ocean, were analyzed. The selected hydrographic stations were: Tumaco (1°48'N-78°45'W), Gorgona island (2°58'N-78°11'W), Solano Bay (6°13'N-77°24'W) and Malpelo island (4°0'N-81°36'W). SSTA time series for 1960-2015 were calculated from monthly Sea Surface Temperature obtained from International Comprehensive Ocean Atmosphere Data Set (ICOADS). SSTA time series, Oceanic Nino Index (ONI), Pacific Decadal Oscillation index (PDO), Arctic Oscillation index (AO) and sunspots number (associated to solar activity), were compared. It was found that the SSTA absolute minimum has occurred in Tumaco (-3.93°C) in March 2009, in Gorgona (-3.71°C) in October 2007, in Solano Bay (-4.23°C) in April 2014 and Malpelo (-4.21°C) in December 2005. The SSTA absolute maximum was observed in Tumaco (3.45°C) in January 2002, in Gorgona (5.01°C) in July 1978, in Solano Bay (5.27°C) in March 1998 and Malpelo (3.64°C) in July 2015. A high correlation between SST and ONI in large part of study period, followed by a good correlation with PDO, was identified. The AO and SSTA have showed an inverse relationship in some periods. Solar Cycle has showed to be a modulator of behavior of SSTA in the selected stations. It was determined that extreme values of SST are related to the analyzed large scale oscillations.


Sign in / Sign up

Export Citation Format

Share Document