scholarly journals Oligocene deep water export from the North Atlantic and the development of the Antarctic Circumpolar Current examined with neodymium isotopes

2008 ◽  
Vol 23 (1) ◽  
pp. n/a-n/a ◽  
Author(s):  
Howie D. Scher ◽  
Ellen E. Martin
1998 ◽  
Vol 180 ◽  
pp. 163-167
Author(s):  
Antoon Kuijpers ◽  
Jørn Bo Jensen ◽  
Simon R . Troelstra ◽  
And shipboard scientific party of RV Professor Logachev and RV Dana

Direct interaction between the atmosphere and the deep ocean basins takes place today only in the Southern Ocean near the Antarctic continent and in the northern extremity of the North Atlantic Ocean, notably in the Norwegian–Greenland Sea and Labrador Sea. Cooling and evaporation cause surface waters in the latter region to become dense and sink. At depth, further mixing occurs with Arctic water masses from adjacent polar shelves. Export of these water masses from the Norwegian–Greenland Sea (Norwegian Sea Overflow Water) to the North Atlantic basin occurs via two major gateways, the Denmark Strait system and the Faeroe– Shetland Channel and Faeroe Bank Channel system (e.g. Dickson et al. 1990; Fig.1). Deep convection in the Labrador Sea produces intermediate waters (Labrador Sea Water), which spreads across the North Atlantic. Deep waters thus formed in the North Atlantic (North Atlantic Deep Water) constitute an essential component of a global ‘conveyor’ belt extending from the North Atlantic via the Southern and Indian Oceans to the Pacific. Water masses return as a (warm) surface water flow. In the North Atlantic this is the Gulf Stream and the relatively warm and saline North Atlantic Current. Numerous palaeo-oceanographic studies have indicated that climatic changes in the North Atlantic region are closely related to changes in surface circulation and in the production of North Atlantic Deep Water. Abrupt shut-down of the ocean-overturning and subsequently of the conveyor belt is believed to represent a potential explanation for rapid climate deterioration at high latitudes, such as those that caused the Quaternary ice ages. Here it should be noted, that significant changes in deep convection in Greenland waters have also recently occurred. While in the Greenland Sea deep water formation over the last decade has drastically decreased, a strong increase of deep convection has simultaneously been observed in the Labrador Sea (Sy et al. 1997).


2020 ◽  
Vol 33 (6) ◽  
pp. 2111-2130
Author(s):  
Woo Geun Cheon ◽  
Jong-Seong Kug

AbstractIn the framework of a sea ice–ocean general circulation model coupled to an energy balance atmospheric model, an intensity oscillation of Southern Hemisphere (SH) westerly winds affects the global ocean circulation via not only the buoyancy-driven teleconnection (BDT) mode but also the Ekman-driven teleconnection (EDT) mode. The BDT mode is activated by the SH air–sea ice–ocean interactions such as polynyas and oceanic convection. The ensuing variation in the Antarctic meridional overturning circulation (MOC) that is indicative of the Antarctic Bottom Water (AABW) formation exerts a significant influence on the abyssal circulation of the globe, particularly the Pacific. This controls the bipolar seesaw balance between deep and bottom waters at the equator. The EDT mode controlled by northward Ekman transport under the oscillating SH westerly winds generates a signal that propagates northward along the upper ocean and passes through the equator. The variation in the western boundary current (WBC) is much stronger in the North Atlantic than in the North Pacific, which appears to be associated with the relatively strong and persistent Mindanao Current (i.e., the southward flowing WBC of the North Pacific tropical gyre). The North Atlantic Deep Water (NADW) formation is controlled by salt advected northward by the North Atlantic WBC.


2012 ◽  
Vol 81 (3) ◽  
pp. 1133-1137 ◽  
Author(s):  
R. P. Vieira ◽  
B. Christiansen ◽  
S. Christiansen ◽  
J. M. S. Gonçalves

2007 ◽  
Vol 20 (3) ◽  
pp. 436-448 ◽  
Author(s):  
Ronald J. Stouffer ◽  
Dan Seidov ◽  
Bernd J. Haupt

Abstract The response of an atmosphere–ocean general circulation model (AOGCM) to perturbations of freshwater fluxes across the sea surface in the North Atlantic and Southern Ocean is investigated. The purpose of this study is to investigate aspects of the so-called bipolar seesaw where one hemisphere warms and the other cools and vice versa due to changes in the ocean meridional overturning. The experimental design is idealized where 1 Sv (1 Sv ≡ 106 m3 s−1) of freshwater is added to the ocean surface for 100 model years and then removed. In one case, the freshwater perturbation is located in the Atlantic Ocean from 50° to 70°N. In the second case, it is located south of 60°S in the Southern Ocean. In the case where the North Atlantic surface waters are freshened, the Atlantic thermohaline circulation (THC) and associated northward oceanic heat transport weaken. In the Antarctic surface freshening case, the Atlantic THC is mainly unchanged with a slight weakening toward the end of the integration. This weakening is associated with the spreading of the fresh sea surface anomaly from the Southern Ocean into the rest of the World Ocean. There are two mechanisms that may be responsible for such weakening of the Atlantic THC. First is that the sea surface salinity (SSS) contrast between the North Atlantic and North Pacific is reduced. And, second, when freshwater from the Southern Ocean reaches the high latitudes of the North Atlantic Ocean, it hinders the sinking of the surface waters, leading to the weakening of the THC. The spreading of the fresh SSS anomaly from the Southern Ocean into the surface waters worldwide was not seen in earlier experiments. Given the geography and climatology of the Southern Hemisphere where the climatological surface winds push the surface waters northward away from the Antarctic continent, it seems likely that the spreading of the fresh surface water anomaly could occur in the real world. A remarkable symmetry between the two freshwater perturbation experiments in the surface air temperature (SAT) response can be seen. In both cases, the hemisphere with the freshwater perturbation cools, while the opposite hemisphere warms slightly. In the zonally averaged SAT figures, both the magnitude and the pattern of the anomalies look similar between the two cases. The oceanic response, on the other hand, is very different for the two freshwater cases, as noted above for the spreading of the SSS anomaly and the associated THC response. If the differences between the atmospheric and oceanic responses apply to the real world, then the interpretation of paleodata may need to be revisited. To arrive at a correct interpretation, it matters whether or not the evidence is mainly of atmospheric or oceanic origin. Also, given the sensitivity of the results to the exact details of the freshwater perturbation locations, especially in the Southern Hemisphere, a more realistic scenario must be constructed to explore these questions.


2021 ◽  
Author(s):  
Philippe Miron ◽  
Maria J. Olascoaga ◽  
Francisco J. Beron-Vera ◽  
Kimberly L. Drouin ◽  
M. Susan Lozier

<p>The North Atlantic Deep Water (NADW) flows equatorward along the Deep Western Boundary Current (DWBC) as well as interior pathways and is a critical part of the Atlantic Meridional Overturning Circulation. Its upper layer, the Labrador Sea Water (LSW), is formed by open-ocean deep convection in the Labrador and Irminger Seas while its lower layers, the Iceland–Scotland Overflow Water (ISOW) and the Denmark Strait Overflow Water (DSOW), are formed north of the Greenland–Iceland–Scotland Ridge.</p><p>In recent years, more than two hundred acoustically-tracked subsurface floats have been deployed in the deep waters of the North Atlantic.  Studies to date have highlighted water mass pathways from launch locations, but due to limited float trajectory lengths, these studies have been unable to identify pathways connecting  remote regions.</p><p>This work presents a framework to explore deep water pathways from their respective sources in the North Atlantic using Markov Chain (MC) modeling and Transition Path Theory (TPT). Using observational trajectories released as part of OSNAP and the Argo projects, we constructed two MCs that approximate the lower and upper layers of the NADW Lagrangian dynamics. The reactive NADW pathways—directly connecting NADW sources with a target at 53°N—are obtained from these MCs using TPT.</p><p>Preliminary results show that twenty percent more pathways of the upper layer(LSW) reach the ocean interior compared to  the lower layer (ISOW, DSOW), which mostly flows along the DWBC in the subpolar North Atlantic. Also identified are the Labrador Sea recirculation pathways to the Irminger Sea and the direct connections from the Reykjanes Ridge to the eastern flank of the Mid–Atlantic Ridge, both previously observed. Furthermore, we quantified the eastern spread of the LSW to the area surrounding the Charlie–Gibbs Fracture Zone and compared it with previous analysis. Finally, the residence time of the upper and lower layers are assessed and compared to previous observations.</p>


Sign in / Sign up

Export Citation Format

Share Document