north atlantic deep water
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 18)

H-INDEX

40
(FIVE YEARS 2)

2021 ◽  
Vol 269 ◽  
pp. 107146
Author(s):  
Joohee Kim ◽  
Steven L. Goldstein ◽  
Leopoldo D. Pena ◽  
Maria Jaume-Seguí ◽  
Karla P. Knudson ◽  
...  

2021 ◽  
Author(s):  
Philippe Miron ◽  
Maria J. Olascoaga ◽  
Francisco J. Beron-Vera ◽  
Kimberly L. Drouin ◽  
M. Susan Lozier

<p>The North Atlantic Deep Water (NADW) flows equatorward along the Deep Western Boundary Current (DWBC) as well as interior pathways and is a critical part of the Atlantic Meridional Overturning Circulation. Its upper layer, the Labrador Sea Water (LSW), is formed by open-ocean deep convection in the Labrador and Irminger Seas while its lower layers, the Iceland–Scotland Overflow Water (ISOW) and the Denmark Strait Overflow Water (DSOW), are formed north of the Greenland–Iceland–Scotland Ridge.</p><p>In recent years, more than two hundred acoustically-tracked subsurface floats have been deployed in the deep waters of the North Atlantic.  Studies to date have highlighted water mass pathways from launch locations, but due to limited float trajectory lengths, these studies have been unable to identify pathways connecting  remote regions.</p><p>This work presents a framework to explore deep water pathways from their respective sources in the North Atlantic using Markov Chain (MC) modeling and Transition Path Theory (TPT). Using observational trajectories released as part of OSNAP and the Argo projects, we constructed two MCs that approximate the lower and upper layers of the NADW Lagrangian dynamics. The reactive NADW pathways—directly connecting NADW sources with a target at 53°N—are obtained from these MCs using TPT.</p><p>Preliminary results show that twenty percent more pathways of the upper layer(LSW) reach the ocean interior compared to  the lower layer (ISOW, DSOW), which mostly flows along the DWBC in the subpolar North Atlantic. Also identified are the Labrador Sea recirculation pathways to the Irminger Sea and the direct connections from the Reykjanes Ridge to the eastern flank of the Mid–Atlantic Ridge, both previously observed. Furthermore, we quantified the eastern spread of the LSW to the area surrounding the Charlie–Gibbs Fracture Zone and compared it with previous analysis. Finally, the residence time of the upper and lower layers are assessed and compared to previous observations.</p>


Ocean Science ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 59-90
Author(s):  
Céline Heuzé

Abstract. Deep and bottom water formation are crucial components of the global ocean circulation, yet they were poorly represented in the previous generation of climate models. We here quantify biases in Antarctic Bottom Water (AABW) and North Atlantic Deep Water (NADW) formation, properties, transport, and global extent in 35 climate models that participated in the latest Climate Model Intercomparison Project (CMIP6). Several CMIP6 models are correctly forming AABW via shelf processes, but 28 models in the Southern Ocean and all 35 models in the North Atlantic form deep and bottom water via open-ocean deep convection too deeply, too often, and/or over too large an area. Models that convect the least form the most accurate AABW but the least accurate NADW. The four CESM2 models with their overflow parameterisation are among the most accurate models. In the Atlantic, the colder the AABW, the stronger the abyssal overturning at 30∘ S, and the further north the AABW layer extends. The saltier the NADW, the stronger the Atlantic Meridional Overturning Circulation (AMOC), and the further south the NADW layer extends. In the Indian and Pacific oceans in contrast, the fresher models are the ones which extend the furthest regardless of the strength of their abyssal overturning, most likely because they are also the models with the weakest fronts in the Antarctic Circumpolar Current. There are clear improvements since CMIP5: several CMIP6 models correctly represent or parameterise Antarctic shelf processes, fewer models exhibit Southern Ocean deep convection, more models convect at the right location in the Labrador Sea, bottom density biases are reduced, and abyssal overturning is more realistic. However, more improvements are required, e.g. by generalising the use of overflow parameterisations or by coupling to interactive ice sheet models, before deep and bottom water formation, and hence heat and carbon storage, are represented accurately.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Tatsuya Hayashi ◽  
Toshiro Yamanaka ◽  
Yuki Hikasa ◽  
Masahiko Sato ◽  
Yoshihiro Kuwahara ◽  
...  

Abstract The global climate has been dominated by glacial–interglacial variations since the intensification of Northern Hemisphere glaciation 2.7 million years ago. Although the Atlantic meridional overturning circulation has exerted strong influence on recent climatic changes, there is controversy over its influence on Northern Hemisphere glaciation because its deep limb, North Atlantic Deep Water, was thought to have weakened. Here we show that Northern Hemisphere glaciation was amplified by the intensified Atlantic meridional overturning circulation, based on multi-proxy records from the subpolar North Atlantic. We found that the Iceland–Scotland Overflow Water, contributing North Atlantic Deep Water, significantly increased after 2.7 million years ago and was actively maintained even in early stages of individual glacials, in contrast with late stages when it drastically decreased because of iceberg melting. Probably, the active Nordic Seas overturning during the early stages of glacials facilitated the efficient growth of ice sheets and amplified glacial oscillations.


2020 ◽  
Author(s):  
Céline Heuzé

Abstract. Deep water formation is the driver of the global ocean circulation, yet it was poorly represented in the previous generation of climate models. We here quantify biases in Antarctic Bottom Water (AABW) and North Atlantic Deep Water (NADW) formation, properties, transport and global extent in 35 climate models that participated in the latest Climate Model Intercomparison Project (CMIP6). Several CMIP6 models are correctly forming AABW via shelf processes, but in both hemispheres, the large majority of climate models form deep water via open ocean deep convection, too deep, too often, over too large an area. Models that convect the least form the most accurate AABW, but the least accurate NADW. The four CESM2 models with their pipe/overflow parameterisation are among the most accurate models. In the Atlantic, the colder AABW, the stronger the abyssal overturning at 30° S, and the further north the AABW layer extends. The saltier NADW, the stronger the Atlantic Meridional Overturning Circulation (AMOC), and the further south the NADW layer extends. In the Indian and Pacific oceans in contrast, the fresher models are the ones who extend the furthest regardless of the strength of their abyssal overturning, most likely because they also are the models with the weakest fronts in the Antarctic Circumpolar Currents. There are clear improvements since CMIP5: several CMIP6 models correctly represent or parameterise Antarctic shelf processes, fewer models exhibit Southern Ocean deep convection, more models convect at the right location in the Labrador Sea, bottom density biases are reduced, and abyssal overturning is more realistic. But more improvements are required, e.g. by generalising the use of overflow parameterisations or by coupling to interactive ice sheet models, before deep water formation, and hence heat and carbon storage, are represented accurately.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ning Zhao ◽  
Delia W. Oppo ◽  
Kuo-Fang Huang ◽  
Jacob N. W. Howe ◽  
Jerzy Blusztajn ◽  
...  

2020 ◽  
Vol 84 ◽  
pp. 175-189
Author(s):  
MG Weinbauer ◽  
C Griebler ◽  
HM van Aken ◽  
GJ Herndl

Viral abundance was assessed in different water masses of the NW Atlantic, and the development of viral abundance, lytic viral infection and lysogeny was followed for the first ca. 5000 km (corresponding to ca. 50 yr in the oceanic conveyor belt) of the western branch of the North Atlantic Deep Water (NADW). Viral abundance was significantly higher in the 100 m layer than in the NADW (2400-2700 m depth) and the Denmark Strait Overflow Water (2400-3600 m depth). The virus-to-prokaryote ratio (VPR) increased with depth, ranging from 32-43 for different water masses of the bathypelagic ocean, thus corroborating the enigma of high viral abundance in the dark ocean. The O2-minimum layer (250-600 m) also showed high viral abundance and VPRs. Viral abundance, a viral subgroup and VPRs decreased in a non-linear form with distance from the NADW origin. Viral production (range: 0.2-2.4 × 107 viruses l-1) and the fraction of lytically infected cells (range: 1-22%) decreased with increasing distance from the formation site of the NADW. Conservative estimations of virus-mediated mortality of prokaryotes in the NADW averaged 20 ± 12%. The fraction of the prokaryotic community with lysogens (i.e. harboring a functional viral DNA) in the NADW averaged 21 ± 14%. Hence, we conclude that (1) viral abundance and subgroups differ between water masses, (2) virus-mediated mortality of prokaryotes as well as lysogeny are significant in the dark ocean and (3) the lysogenic life strategy became more important than the lytic life style during the early formation of the NADW.


Sign in / Sign up

Export Citation Format

Share Document