Identification and quantification of the North Atlantic Deep Water pathways

Author(s):  
Philippe Miron ◽  
Maria J. Olascoaga ◽  
Francisco J. Beron-Vera ◽  
Kimberly L. Drouin ◽  
M. Susan Lozier

<p>The North Atlantic Deep Water (NADW) flows equatorward along the Deep Western Boundary Current (DWBC) as well as interior pathways and is a critical part of the Atlantic Meridional Overturning Circulation. Its upper layer, the Labrador Sea Water (LSW), is formed by open-ocean deep convection in the Labrador and Irminger Seas while its lower layers, the Iceland–Scotland Overflow Water (ISOW) and the Denmark Strait Overflow Water (DSOW), are formed north of the Greenland–Iceland–Scotland Ridge.</p><p>In recent years, more than two hundred acoustically-tracked subsurface floats have been deployed in the deep waters of the North Atlantic.  Studies to date have highlighted water mass pathways from launch locations, but due to limited float trajectory lengths, these studies have been unable to identify pathways connecting  remote regions.</p><p>This work presents a framework to explore deep water pathways from their respective sources in the North Atlantic using Markov Chain (MC) modeling and Transition Path Theory (TPT). Using observational trajectories released as part of OSNAP and the Argo projects, we constructed two MCs that approximate the lower and upper layers of the NADW Lagrangian dynamics. The reactive NADW pathways—directly connecting NADW sources with a target at 53°N—are obtained from these MCs using TPT.</p><p>Preliminary results show that twenty percent more pathways of the upper layer(LSW) reach the ocean interior compared to  the lower layer (ISOW, DSOW), which mostly flows along the DWBC in the subpolar North Atlantic. Also identified are the Labrador Sea recirculation pathways to the Irminger Sea and the direct connections from the Reykjanes Ridge to the eastern flank of the Mid–Atlantic Ridge, both previously observed. Furthermore, we quantified the eastern spread of the LSW to the area surrounding the Charlie–Gibbs Fracture Zone and compared it with previous analysis. Finally, the residence time of the upper and lower layers are assessed and compared to previous observations.</p>

2017 ◽  
Vol 47 (11) ◽  
pp. 2843-2859 ◽  
Author(s):  
C. S. Jones ◽  
Paola Cessi

AbstractThe surface salinity in the North Atlantic controls the position of the sinking branch of the meridional overturning circulation (MOC); the North Atlantic has higher salinity, so deep-water formation occurs there rather than in the North Pacific. Here, it is shown that in a 3D primitive equation model of two basins of different widths connected by a reentrant channel, there is a preference for sinking in the narrow basin even under zonally uniform surface forcing. This preference is linked to the details of the velocity and salinity fields in the “sinking” basin. The southward western boundary current associated with the wind-driven subpolar gyre has higher velocity in the wide basin than in the narrow basin. It overwhelms the northward western boundary current associated with the MOC for wide-basin sinking, so freshwater is brought from the far north of the domain southward and forms a pool on the western boundary in the wide basin. The fresh pool suppresses local convection and spreads eastward, leading to low salinities in the north of the wide basin for wide-basin sinking. This pool of freshwater is much less prominent in the narrow basin for narrow-basin sinking, where the northward MOC western boundary current overcomes the southward western boundary current associated with the wind-driven subpolar gyre, bringing salty water from lower latitudes northward and enabling deep-water mass formation.


2016 ◽  
Vol 29 (21) ◽  
pp. 7723-7742 ◽  
Author(s):  
Xiaobiao Xu ◽  
Peter B. Rhines ◽  
Eric P. Chassignet

Abstract This study investigates the circulation structure and relative contribution of circulation components to the time-mean meridional heat and freshwater transports in the North Atlantic, using numerical results of a high-resolution ocean model that are shown to be in excellent agreement with the observations. The North Atlantic circulation can be separated into the large-scale Atlantic meridional overturning circulation (AMOC) that is diapycnal and the subtropical and subpolar gyres that largely flow along isopycnal surfaces but also include prominent gyre-scale diapycnal overturning in the Subtropical Mode Water and Labrador Sea Water. Integrals of the meridional volume transport as a function of potential temperature θ and salinity S yield streamfunctions with respect to θ and to S, and heat functions. These argue for a significant contribution to the heat transport by the southward circulation of North Atlantic Deep Water. At 26.5°N, the isopycnic component of the subtropical gyre is colder and fresher in the northward-flowing western boundary currents than the southward return flows, and it carries heat southward and freshwater northward, opposite of that of the diapycnal component. When combined, the subtropical gyre contributes virtually zero to the heat transport and the AMOC is responsible for all the heat transport across this latitude. The subtropical gyre however significantly contributes to the freshwater transport, reducing the 0.5-Sv (1 Sv ≡ 106 m3 s–1) southward AMOC freshwater transport by 0.13 Sv. In the subpolar North Atlantic near 58°N, the diapycnal component of the circulation, or the transformation of warm saline upper Atlantic water into colder fresher deep waters, is responsible for essentially all of the heat and freshwater transports.


2012 ◽  
Vol 42 (1) ◽  
pp. 110-125 ◽  
Author(s):  
Paul Spence ◽  
Oleg A. Saenko ◽  
Willem Sijp ◽  
Matthew England

Abstract Four versions of the same global climate model, one with horizontal resolution of 1.8° × 3.6° and three with 0.2° × 0.4°, are employed to evaluate the role of ocean bottom topography and viscosity on the spatial structure of the deep circulation. This study is motivated by several recent observational studies that find that subsurface floats injected near the western boundary of the Labrador Sea most often do not continuously follow the deep western boundary current (DWBC), in contrast to the traditional view that the deep water formed in the North Atlantic predominantly follows the DWBC. It is found that, with imposed large viscosity values, the model reproduces the traditional view. However, as viscosity is reduced and the model bathymetry resolution increased, much of the North Atlantic Deep Water (NADW) separates from the western boundary and enters the low-latitude Atlantic via interior pathways distinct from the DWBC. It is shown that bottom pressure torques play an important role in maintaining these interior NADW outflows.


2020 ◽  
Author(s):  
Lucie Menabreaz ◽  
Claude Hillaire-Marcel ◽  
Maccali Jenny ◽  
André Poirier ◽  
Bassam Ghaleb ◽  
...  

<p><strong>The Atlantic Meridional Overturning Circulation (AMOC) and the production rate of the North Atlantic Deep Water (NADW) are major components of the North Atlantic climate-system, with important hemispheric climatic influences. The post-glacial history of the AMOC, as reconstructed from Nd-isotopes (ε</strong><strong>Nd) in biogenic minerals and sediments</strong><strong>, demonstrates its sensitivity to freshwater fluxes, </strong><strong>leading to concerns about its near-future response to the ongoing accelerated Greenland/Arctic ice melting</strong><strong>. Whereas the early Holocene inception of the deep NADW components originating from the Nordic Seas has been well documented from such ε</strong><strong>Nd-data, information on the status of its western, shallower and most sensitive component, the Labrador Sea Water (LSW), is still missing. New ε</strong><strong>Nd-measurements in corals from the Labrador Slope provide the means to fill this gap. These data demonstrate that convection in the Labrador Sea was fully implemented by ca. 4 ka BP only, i.e., well after the final demise of the Laurentide ice-sheet. The time- and space-transgressive pattern of the full AMOC inception implies more complex driving mechanisms than meltwater fluxes only. </strong><strong>Whereas the late Holocene neo-glacial cooling trend could have played here a minor role, the penetration and strengthening of the Irminger Current into the Labrador Sea has likely been the driving force. </strong></p>


2011 ◽  
Vol 8 (1) ◽  
pp. 453-482 ◽  
Author(s):  
I. Núñez-Riboni ◽  
M. Bersch ◽  
H. Haak ◽  
J. H. Jungclaus

Abstract. Observations since the 1950s show a multi-decadal cycle of a meridional displacement of the Subpolar Front (SPF) in the Newfoundland Basin (NFB) in the North Atlantic. The SPF displacement is associated with corresponding variations in the path of the North Atlantic Current. We use the ocean general circulation model MPIOM with enhanced horizontal and vertical resolutions and forced with NCEP/NCAR reanalysis data to study the relation of the SPF displacement to Labrador Sea Water (LSW) volume, atmospheric forcing and intensities of the Subpolar Gyre (SPG) and Meridional Overturning Circulation (MOC). The simulations indicate that the SPF displacement is associated with a circulation anomaly between the SPG and the subtropical gyre (STG), an inter-gyre gyre with a multi-decadal time scale. Contributions of wind stress curl (WSC) and LSW volume changes to the inter-gyre gyre are similar between 35 and 55° N (excluding the western boundary current). An anticyclonic inter-gyre gyre is related to negative WSC and LSW anomalies and to a SPF north of its climatological position, indicating an expanding STG. A cyclonic inter-gyre gyre is related to positive WSC and LSW anomalies and a SPF south of its climatological position, indicating an expanding SPG. Therefore, the mean latitudinal position of the SPF in the NFB could be an indicator of the amount of LSW in the inter-gyre region. Spreading of LSW anomalies intensifies the MOC, suggesting our SPF index as predictor of the MOC intensity at multi-decadal time scales. The meridional displacement of the SPF has a pronounced influence on the meridional heat transport, both on its gyre and overturning components.


2010 ◽  
Vol 7 (6) ◽  
pp. 1953-1976
Author(s):  
A. C. Silva ◽  
M. Grenier ◽  
R. Chuchla ◽  
J. Grelet ◽  
F. Roubaud ◽  
...  

Abstract. The properties and circulation of water masses are examined using data collected from a hydrographic and Acoustic Doppler Current profiler in the Western Tropical Atlantic during two cruises of the GEOTRACES process study "AMANDES" (AMazon-ANDEans): AMANDES I (October–November 2007) and AMANDES II (January 2008). In the upper layer (from the sea surface to 150 m) means of vertical sections of velocity are showing the structure of the Current (NBC) and North Equatorial Countercurrent. In the lower layer (below 150 m) the subsurface velocity core of the North Brazil UnderCurrent, Western Boundary Undercurrent (WBUC) and northern branch of the South Equatorial Current (nSEC) could be observed. In October the WBUC flows southeastward with a velocity of about 0.3 m s−1. In the studied area during October 2007, the NBUC and nSEC are transporting South Atlantic Central Water (SACW) from the Southern Hemisphere whereas the WBUC transports North Atlantic Central Water (NACW) southeastward. In the deep layers, the North Atlantic Deep Water (NADW) is composed of three components: the Upper North Atlantic Deep Water – UNADW (between 1310 and 1650 m), the Middle North Atlantic Deep Water (between 1930 and 2400 m), the Lower North Atlantic Deep Water (centered around 3430 m). Off Guyana, the Antartic Intermediate Water (AAIW) changes of composition between October 2007 (45.2% ACW, 32.2% AAIWsource and 22.6% UNADW) and January 2008 (62.4% ACW, 23.5% AAIWsource and 14.1% UNADW). These intermediate waters are significantly warmer, less oxygenated and saltier than their southern source, reflecting both oxygen consumption and mixing with the Atlantic Central Water (ACW) and the Upper North Atlantic Deep Water during their northward transit.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Qian Yang ◽  
Timothy H. Dixon ◽  
Paul G. Myers ◽  
Jennifer Bonin ◽  
Don Chambers ◽  
...  

Abstract The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland’s ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater flux unclear. Here we derive a new estimate of the recent freshwater flux from Greenland using updated GRACE satellite data, present new flux estimates for heat and salt from the North Atlantic into the Labrador Sea and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening.


1998 ◽  
Vol 180 ◽  
pp. 163-167
Author(s):  
Antoon Kuijpers ◽  
Jørn Bo Jensen ◽  
Simon R . Troelstra ◽  
And shipboard scientific party of RV Professor Logachev and RV Dana

Direct interaction between the atmosphere and the deep ocean basins takes place today only in the Southern Ocean near the Antarctic continent and in the northern extremity of the North Atlantic Ocean, notably in the Norwegian–Greenland Sea and Labrador Sea. Cooling and evaporation cause surface waters in the latter region to become dense and sink. At depth, further mixing occurs with Arctic water masses from adjacent polar shelves. Export of these water masses from the Norwegian–Greenland Sea (Norwegian Sea Overflow Water) to the North Atlantic basin occurs via two major gateways, the Denmark Strait system and the Faeroe– Shetland Channel and Faeroe Bank Channel system (e.g. Dickson et al. 1990; Fig.1). Deep convection in the Labrador Sea produces intermediate waters (Labrador Sea Water), which spreads across the North Atlantic. Deep waters thus formed in the North Atlantic (North Atlantic Deep Water) constitute an essential component of a global ‘conveyor’ belt extending from the North Atlantic via the Southern and Indian Oceans to the Pacific. Water masses return as a (warm) surface water flow. In the North Atlantic this is the Gulf Stream and the relatively warm and saline North Atlantic Current. Numerous palaeo-oceanographic studies have indicated that climatic changes in the North Atlantic region are closely related to changes in surface circulation and in the production of North Atlantic Deep Water. Abrupt shut-down of the ocean-overturning and subsequently of the conveyor belt is believed to represent a potential explanation for rapid climate deterioration at high latitudes, such as those that caused the Quaternary ice ages. Here it should be noted, that significant changes in deep convection in Greenland waters have also recently occurred. While in the Greenland Sea deep water formation over the last decade has drastically decreased, a strong increase of deep convection has simultaneously been observed in the Labrador Sea (Sy et al. 1997).


2018 ◽  
Author(s):  
Manon Tonnard ◽  
Hélène Planquette ◽  
Andrew R. Bowie ◽  
Pier van der Merwe ◽  
Morgane Gallinari ◽  
...  

Abstract. Dissolved Fe (DFe) samples from the GEOVIDE voyage (GEOTRACES GA01, May–June 2014) in the North Atlantic Ocean were analysed using a SeaFAST-picoTM coupled to an Element XR HR-ICP-MS and provided interesting insights on the Fe sources in this area. Overall, DFe concentrations ranged from 0.09 ± 0.01 nmol L−1 to 7.8 ± 0.5 nmol L−1. Elevated DFe concentrations were observed above the Iberian, Greenland and Newfoundland Margins likely due to riverine inputs from the Tagus River, meteoric water inputs and sedimentary inputs. Air-sea interactions were suspected to be responsible for the increase in DFe concentrations within subsurface waters of the Irminger Sea due to deep convection occurring the previous winter, that provided iron-to-nitrate ratios sufficient to sustain phytoplankton growth. Increasing DFe concentrations along the flow path of the Labrador Sea Water were attributed to sedimentary inputs from the Newfoundland Margin. Bottom waters from the Irminger Sea displayed high DFe concentrations likely due to the dissolution of Fe-rich particles from the Denmark Strait Overflow Water and the Polar Intermediate Water. Finally, the nepheloid layers were found to act as either a source or a sink of DFe depending on the nature of particles.


Sign in / Sign up

Export Citation Format

Share Document