Global structure and dynamics of large-scale fluctuations in the solar wind: Voyager 2 observations during 2005 and 2006

2008 ◽  
Vol 113 (A2) ◽  
pp. n/a-n/a ◽  
Author(s):  
L. F. Burlaga ◽  
N. F Ness ◽  
M. H. Acũna ◽  
Y.-M. Wang ◽  
N. R. Sheeley ◽  
...  
2021 ◽  
pp. 213-240
Author(s):  
Hannu E. J. Koskinen ◽  
Emilia K. J. Kilpua

AbstractIn this chapter we discuss the overall structure and dynamics of the electron belts and some of their peculiar features. We also consider the large-scale solar wind structures that drive geomagnetic storms and detail the specific responses of radiation belts on them. Numerous satellite observations have highlighted the strong variability of the outer electron belt and the slot region during the storms, and the energy and L-shell dependence of these variations. The belts can also experience great variations when interplanetary shocks or pressure pulses impact the Earth, even without a following storm sequence.


2020 ◽  
Author(s):  
Yuri Yermolaev ◽  
Irina Lodkina ◽  
Alexander Khokhlachev ◽  
Michael Yermolaev ◽  
Natalia Borodkova ◽  
...  

2021 ◽  
Author(s):  
Rohit Chhiber ◽  
Arcadi Usmanov ◽  
William Matthaeus ◽  
Melvyn Goldstein ◽  
Riddhi Bandyopadhyay

<div>Simulation results from a global <span>magnetohydrodynamic</span> model of the solar corona and the solar wind are compared with Parker Solar <span>Probe's</span> (<span>PSP</span>) observations during its first several orbits. The fully three-dimensional model (<span>Usmanov</span> <span>et</span> <span>al</span>., 2018, <span>ApJ</span>, 865, 25) is based on Reynolds-averaged mean-flow equations coupled with turbulence transport equations. The model accounts for effects of electron heat conduction, Coulomb collisions, Reynolds stresses, and heating of protons and electrons via nonlinear turbulent cascade. Turbulence transport equations for turbulence energy, cross <span>helicity</span>, and correlation length are solved concurrently with the mean-flow equations. We specify boundary conditions at the coronal base using solar synoptic <span>magnetograms</span> and calculate plasma, magnetic field, and turbulence parameters along the <span>PSP</span> trajectory. We also accumulate data from all orbits considered, to obtain the trends observed as a function of heliocentric distance. Comparison of simulation results with <span>PSP</span> data show general agreement. Finally, we generate synthetic fluctuations constrained by the local rms turbulence amplitude given by the model, and compare properties of this synthetic turbulence with PSP observations.</div>


2021 ◽  
Author(s):  
Harlan Spence ◽  
Kristopher Klein ◽  
HelioSwarm Science Team

<p>Recently selected for phase A study for NASA’s Heliophysics MidEx Announcement of Opportunity, the HelioSwarm Observatory proposes to transform our understanding of the physics of turbulence in space and astrophysical plasmas by deploying nine spacecraft to measure the local plasma and magnetic field conditions at many points, with separations between the spacecraft spanning MHD and ion scales.  HelioSwarm resolves the transfer and dissipation of turbulent energy in weakly-collisional magnetized plasmas with a novel configuration of spacecraft in the solar wind. These simultaneous multi-point, multi-scale measurements of space plasmas allow us to reach closure on two science goals comprised of six science objectives: (1) reveal how turbulent energy is transferred in the most probable, undisturbed solar wind plasma and distributed as a function of scale and time; (2) reveal how this turbulent cascade of energy varies with the background magnetic field and plasma parameters in more extreme solar wind environments; (3) quantify the transfer of turbulent energy between fields, flows, and ion heat; (4) identify thermodynamic impacts of intermittent structures on ion distributions; (5) determine how solar wind turbulence affects and is affected by large-scale solar wind structures; and (6) determine how strongly driven turbulence differs from that in the undisturbed solar wind. </p>


2018 ◽  
Vol 868 (2) ◽  
pp. 137 ◽  
Author(s):  
Ming Xiong ◽  
Jackie A. Davies ◽  
Xueshang Feng ◽  
Bo Li ◽  
Liping Yang ◽  
...  

2009 ◽  
Vol 5 (S264) ◽  
pp. 356-358 ◽  
Author(s):  
P. K. Manoharan

AbstractIn this paper, I present the results on large-scale evolution of density turbulence of solar wind in the inner heliosphere during 1985–2009. At a given distance from the Sun, the density turbulence is maximum around the maximum phase of the solar cycle and it reduces to ~70%, near the minimum phase. However, in the current minimum of solar activity, the level of turbulence has gradually decreased, starting from the year 2005, to the present level of ~30%. These results suggest that the source of solar wind changes globally, with the important implication that the supply of mass and energy from the Sun to the interplanetary space has significantly reduced in the present low level of activity.


1977 ◽  
Vol 43 ◽  
pp. 9-9
Author(s):  
G.E. Brueckner ◽  
J.D.F. Bartoe ◽  
M.E. VanHoosier

High spectral (0,05 Å) and spatial (⋍ 1000 km) resolution spectra of the Fe XII line 1349.4 Å reveal the existence of coronal fine structures in the quiet sun against the solar disk. These coronal bright elements have an average size of 2000-3000 km; their column density can be 3 x 1017 cm –2 . In the quiet sun, outward streaming velocities of 10-15 km sec –1 can be measured by means of the Doppler effect. The total kinetic and thermal energy of the outstreaming gas can be estimated to be larger than 1 x 10 5 ergs cm –2 sec –1, enough to account for the heating of the corona and the losses of the solar wind. At the outer limb (cos θ ⋍0.1) line profiles show a strong blue asymmetry, which could be caused by expanding material in a piston-driven shock, whereby the opaque, cool piston causes the asymmetry of the line profile.


1993 ◽  
Vol 03 (C1) ◽  
pp. C1-237-C1-247 ◽  
Author(s):  
A. DERIU ◽  
F. CAVATORTA ◽  
D. DI COLA ◽  
H. D. MIDDENDORF

Sign in / Sign up

Export Citation Format

Share Document