Factors influencing new particle formation at the rural site, Harwell, United Kingdom

2007 ◽  
Vol 112 (D14) ◽  
Author(s):  
Aurélie Charron ◽  
Wolfram Birmili ◽  
Roy M. Harrison
2006 ◽  
Vol 6 (5) ◽  
pp. 10837-10882 ◽  
Author(s):  
I. Riipinen ◽  
S.-L. Sihto ◽  
M. Kulmala ◽  
F. Arnold ◽  
M. Dal Maso ◽  
...  

Abstract. This study investigates the connections between atmospheric sulphuric acid and new particle formation during QUEST III and BACCI/QUEST IV campaigns. The campaigns have been conducted in Heidelberg (2004) and Hyytiälä (2005), the first representing a polluted site surrounded by deciduous forest, and the second a rural site in a boreal forest environment. We have studied the role of sulphuric acid in particle formation and growth by determining 1) the power-law dependencies between sulphuric acid ([H2SO4]), and particle concentrations (N3–6) or formation rates at 1 nm and 3 nm (J1 and J3; 2) the time delays between [H2SO4] and N3–6 or J3, and the growth rates for 1–3 nm particles; 3) the empirical nucleation coefficients A and K in relations J1=A[H2SO4] and J1=K[H2SO4]2, respectively; 4) theoretical predictions for J1 and J3 for the days when no significant particle formation is observed, based on the observed sulphuric acid concentrations and condensation sinks. In both environments, N3–6 or J3 and [H2SO4] were linked via a power-law relation with exponents typically ranging from 1 to 2. The result suggests that the cluster activation theory and kinetic nucleation have the potential to explain the observed particle formation. However, some differences between the sites existed: The 1–3 nm growth rates were slightly higher and the nucleation coefficients about an order of magnitude greater in Heidelberg than in Hyytiälä conditions. The time lags between J3 and [H2SO4] were consistently lower than the corresponding delays between N3–6 and [H2SO4]. The exponents in the J3∝[H2SO4]nJ3-connection were consistently higher than or equal to the exponents in the relation N3–6∝[H2SO4]nN36. In the J1 values, no significant differences were found between the observed rates on particle formation event days and the predictions on non-event days. The J3 values predicted by the cluster activation or kinetic nucleation hypotheses, on the other hand, were considerably lower on non-event days than the rates observed on particle formation event days. This study provides clear evidence implying that the main process limiting the observable particle formation is the competition between the growth of the freshly formed particles and their loss by scavenging, rather than the initial particle production by nucleation of sulphuric acid. In general, it can be concluded that the simple models based on sulphuric acid concentrations and particle formation by cluster activation or kinetic nucleation can predict the occurence of atmospheric particle formation and growth well, if the particle scavenging is accurately accounted for.


2007 ◽  
Vol 7 (8) ◽  
pp. 1899-1914 ◽  
Author(s):  
I. Riipinen ◽  
S.-L. Sihto ◽  
M. Kulmala ◽  
F. Arnold ◽  
M. Dal Maso ◽  
...  

Abstract. This study investigates the connections between atmospheric sulphuric acid and new particle formation during QUEST III and BACCI/QUEST IV campaigns. The campaigns have been conducted in Heidelberg (2004) and Hyytiälä (2005), the first representing a polluted site surrounded by deciduous forest, and the second a rural site in a boreal forest environment. We have studied the role of sulphuric acid in particle formation and growth by determining 1) the power-law dependencies between sulphuric acid ([H2SO4]), and particle concentrations (N3–6) or formation rates at 1 nm and 3 nm (J1 and J3); 2) the time delays between [H2SO4] and N3–6 or J3, and the growth rates for 1–3 nm particles; 3) the empirical nucleation coefficients A and K in relations J1=A[H2SO4] and J1=K[H2SO4]2, respectively; 4) theoretical predictions for J1 and J3 for the days when no significant particle formation is observed, based on the observed sulphuric acid concentrations and condensation sinks. In both environments, N3–6 or J3 and [H2SO4] were linked via a power-law relation with exponents typically ranging from 1 to 2. The result suggests that the cluster activation theory and kinetic nucleation have the potential to explain the observed particle formation. However, some differences between the sites existed: The nucleation coefficients were about an order of magnitude greater in Heidelberg than in Hyytiälä conditions. The time lags between J3 and [H2SO4] were consistently lower than the corresponding delays between N3–6 and [H2SO4]. The exponents in the J3∝[H2SO4 ]nJ3-connection were consistently higher than or equal to the exponents in the relation N3–6∝[H2SO4 ]nN36. In the J1 values, no significant differences were found between the observed rates on particle formation event days and the predictions on non-event days. The J3 values predicted by the cluster activation or kinetic nucleation hypotheses, on the other hand, were considerably lower on non-event days than the rates observed on particle formation event days. This study provides clear evidence implying that the main process limiting the observable particle formation is the competition between the growth of the freshly formed particles and their loss by scavenging, rather than the initial particle production by nucleation of sulphuric acid. In general, it can be concluded that the simple models based on sulphuric acid concentrations and particle formation by cluster activation or kinetic nucleation can predict the occurence of atmospheric particle formation and growth well, if the particle scavenging is accurately accounted for.


Tellus B ◽  
2013 ◽  
Vol 65 (1) ◽  
pp. 19965 ◽  
Author(s):  
Z. B. Wang ◽  
M. Hu ◽  
D. L. Yue ◽  
L. Y. He ◽  
X. F. Huang ◽  
...  

2009 ◽  
Vol 9 (3) ◽  
pp. 13093-13122
Author(s):  
T. Suni ◽  
L. Sogacheva ◽  
J. Lauros ◽  
H. Hakola ◽  
J. Bäck ◽  
...  

Abstract. The world's forests produce atmospheric aerosol by emitting volatile organic compounds (VOC) which, after being oxidized in the atmosphere, readily condense on the omnipresent nanometer-sized nuclei and grow them to climatically relevant sizes. The cooling effect of aerosols is the greatest uncertainty in current climate models and estimates of radiative forcing. Therefore, identifying the environmental factors influencing the biogenic formation of aerosols is crucial. We show that, in addition to local meteorological factors in the forest, the magnitude of evaporation from oceans hundreds of kilometers upwind can effectively suppress or enhance new-particle formation. Our findings indicate that, unlike warm waters, the cold polar oceans provide excellent clean and dry background air that enhances aerosol formation above near-coastal forests in Fennoscandia and South-East Australia.


2008 ◽  
Vol 5 (6) ◽  
pp. 382 ◽  
Author(s):  
Hai Guo ◽  
Aijun Ding ◽  
Lidia Morawska ◽  
Congrong He ◽  
Godwin Ayoko ◽  
...  

Environmental context. Atmospheric submicrometre particles have a significant impact on human health, visibility impairment, acid deposition and global climate. This study aims to understand the size distribution of submicrometre particles and new particle formation in eastern Australia and the results indicate that photochemical reactions of airborne pollutants are the main mechanism of new particle formation. The findings will contribute to a better understanding of the effects of aerosols on climate and the reduction of submicrometre particles in the atmosphere. Abstract. An intensive measurement campaign of particle concentrations, nitrogen oxides and meteorological parameters was conducted at a rural site in subtropical eastern Australia during September 2006. The aim of this work was to develop an understanding of the formation and growth processes of atmospheric aerosols, and the size distributions under various meteorological conditions. In order to achieve this, the origins of air arriving at the site were explored using back trajectories cluster analysis and the diurnal patterns of particle number concentration and size distribution for the classified air masses were investigated. The study showed that the photochemical formation of nucleation mode particles and their consequent growth was often observed. Furthermore, the nucleation mode usually dominated the size distribution and concentration of the photochemical event in the first 3–4 h with a geometric mean diameter of 26.9 nm and a geometric standard deviation of 1.28. The average particle growth rate was estimated to be 1.6 nm h–1, which is lower than that observed at urban sites, but comparable to the values reported in clean environments. The potential precursors of the photochemical events are also discussed.


2016 ◽  
Author(s):  
Andreas Kürten ◽  
Anton Bergen ◽  
Martin Heinritzi ◽  
Markus Leiminger ◽  
Verena Lorenz ◽  
...  

Abstract. The exact mechanisms for new particle formation (NPF) under different boundary layer conditions are not known yet. One important question is if amines and sulfuric acid lead to efficient NPF in the atmosphere. Furthermore, it is not clear to what extent highly oxidized organic molecules (HOM) are involved in NPF. We conducted field measurements at a rural site in central Germany in the proximity of three larger dairy farms to investigate if there is a connection between NPF and the presence of amines and/or ammonia due to the local emissions from the farms. Comprehensive measurements using a nitrate Chemical Ionization-Atmospheric Pressure interface-Time Of Flight (CI-APi-TOF) mass spectrometer, a Proton Transfer Reaction-Mass Spectrometer (PTR-MS), particle counters and Differential Mobility Analyzers (DMAs) as well as measurements of trace gases and meteorological parameters were performed. It is shown that the nitrate CI-APi-TOF is suitable for sensitive measurements of sulfuric acid, amines, a nitrosamine, ammonia, iodic acid and HOM. NPF was found to correlate with sulfuric acid, while an anti-correlation with RH, amines and ammonia is observed. The anti-correlation between NPF and amines could be due to the efficient uptake of these compounds by nucleating clusters and small particles. Much higher HOM dimer (C19/C20 compounds) concentrations during the night than during the day indicate that these HOM do not efficiently self-nucleate as no night-time NPF is observed. Observed iodic acid probably originates from an iodine-containing reservoir substance but the iodine signals are very likely too low to have a significant effect on NPF.


2016 ◽  
Vol 16 (19) ◽  
pp. 12793-12813 ◽  
Author(s):  
Andreas Kürten ◽  
Anton Bergen ◽  
Martin Heinritzi ◽  
Markus Leiminger ◽  
Verena Lorenz ◽  
...  

Abstract. The exact mechanisms for new particle formation (NPF) under different boundary layer conditions are not known yet. One important question is whether amines and sulfuric acid lead to efficient NPF in the atmosphere. Furthermore, it is not clear to what extent highly oxidized organic molecules (HOMs) are involved in NPF. We conducted field measurements at a rural site in central Germany in the proximity of three larger dairy farms to investigate whether there is a connection between NPF and the presence of amines and/or ammonia due to the local emissions from the farms. Comprehensive measurements using a nitrate chemical ionization–atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometer, a proton-transfer-reaction mass spectrometer (PTR-MS), particle counters and differential mobility analyzers (DMAs), as well as measurements of trace gases and meteorological parameters, were performed. We demonstrate here that the nitrate CI-APi-TOF is suitable for sensitive measurements of sulfuric acid, amines, a nitrosamine, ammonia, iodic acid and HOMs. NPF was found to correlate with sulfuric acid, while an anti-correlation with RH, amines and ammonia is observed. The anti-correlation between NPF and amines could be due to the efficient uptake of these compounds by nucleating clusters and small particles. Much higher HOM dimer (C19/C20 compounds) concentrations during the night than during the day indicate that these HOMs do not efficiently self-nucleate as no nighttime NPF is observed. Observed iodic acid probably originates from an iodine-containing reservoir substance, but the iodine signals are very likely too low to have a significant effect on NPF.


Sign in / Sign up

Export Citation Format

Share Document