Investigating the ability of general circulation models to capture the effects of Eurasian snow cover on winter climate

2008 ◽  
Vol 113 (D21) ◽  
Author(s):  
Steven C. Hardiman ◽  
Paul J. Kushner ◽  
Judah Cohen
1990 ◽  
Vol 14 ◽  
pp. 364 ◽  
Author(s):  
Tetsuzo Yasunari ◽  
Akio Kitoh ◽  
Tatsushi Tokioka

Observational studies have shown that Eurasian snow-cover anomalies during winter-through-spring seasons have a great effect on anomalies in atmospheric circulation and climate in the following summer season through snow albedo feedback (Hahn and Shukla, 1976; Dey and Bhanu Kumar, 1987). Morinaga and Yasunari (1987) have revealed that large-scale snow-cover extent over central Asia in late winter, which particularly has a great effect on the circulation over Eurasia in the following season, is closely related to the Eurasian pattern circulation (Wallace and Gutzler, 1981) in the beginning of winter. Some atmospheric general circulation models (GCM) have suggested that not only the albedo effect of the snow cover but also the snow-hydrological process are important in producing the atmospheric anomalies in the following seasons (Yeh and others, 1984; Barnett and others, 1988). However, more quantitative evaluations of these effects have not yet been examined. For example, it is not clear to what extent atmospheric anomalies are explained solely by snow-cover anomalies. Spatial and seasonal dependencies of these effects are supposed to be very large. Relative importance of snow cover over Tibetan Plateau should also be examined, particularly relevant to Asian summer monsoon anomalies. Moreover, these effects seem to be very sensitive to parameterizations of these physical processes (Yamazaki, 1988). This study focuses on these problems by using some versions of GCMs of the Meteorological Research Institute. The results include the evaluation of total snow-cover feedbacks as part of internal dynamics of climatic change from 12-year GCM integration, and of the effect of anomalous snow cover over Eurasia in late winter on land surface conditions and atmospheric circulations in the succeeding seasons.


2011 ◽  
Vol 24 (24) ◽  
pp. 6528-6539 ◽  
Author(s):  
Robert J. Allen ◽  
Charles S. Zender

Abstract Throughout much of the latter half of the twentieth century, the dominant mode of Northern Hemisphere (NH) extratropical wintertime circulation variability—the Arctic Oscillation (AO)—exhibited a positive trend, with decreasing high-latitude sea level pressure (SLP) and increasing midlatitude SLP. General circulation models (GCMs) show that this trend is related to several factors, including North Atlantic SSTs, greenhouse gas/ozone-induced stratospheric cooling, and warming of the Indo-Pacific warm pool. Over the last approximately two decades, however, the AO has been decreasing, with 2009/10 featuring the most negative AO since 1900. Observational and idealized modeling studies suggest that snow cover, particularly over Eurasia, may be important. An observed snow–AO mechanism also exists, involving the vertical propagation of a Rossby wave train into the stratosphere, which induces a negative AO response that couples to the troposphere. Similar to other GCMs, the authors show that transient simulations with the Community Atmosphere Model, version 3 (CAM3) yield a snow–AO relationship inconsistent with observations and dissimilar AO trends. However, Eurasian snow cover and its interannual variability are significantly underestimated. When the albedo effects of snow cover are prescribed in CAM3 (CAM PS) using satellite-based snow cover fraction data, a snow–AO relationship similar to observations develops. Furthermore, the late-twentieth-century increase in the AO, and particularly the recent decrease, is reproduced by CAM PS. The authors therefore conclude that snow cover has helped force the observed AO trends and that it may play an important role in future AO trends.


1990 ◽  
Vol 14 ◽  
pp. 364-364 ◽  
Author(s):  
Tetsuzo Yasunari ◽  
Akio Kitoh ◽  
Tatsushi Tokioka

Observational studies have shown that Eurasian snow-cover anomalies during winter-through-spring seasons have a great effect on anomalies in atmospheric circulation and climate in the following summer season through snow albedo feedback (Hahn and Shukla, 1976; Dey and Bhanu Kumar, 1987). Morinaga and Yasunari (1987) have revealed that large-scale snow-cover extent over central Asia in late winter, which particularly has a great effect on the circulation over Eurasia in the following season, is closely related to the Eurasian pattern circulation (Wallace and Gutzler, 1981) in the beginning of winter.Some atmospheric general circulation models (GCM) have suggested that not only the albedo effect of the snow cover but also the snow-hydrological process are important in producing the atmospheric anomalies in the following seasons (Yeh and others, 1984; Barnett and others, 1988).However, more quantitative evaluations of these effects have not yet been examined. For example, it is not clear to what extent atmospheric anomalies are explained solely by snow-cover anomalies. Spatial and seasonal dependencies of these effects are supposed to be very large. Relative importance of snow cover over Tibetan Plateau should also be examined, particularly relevant to Asian summer monsoon anomalies. Moreover, these effects seem to be very sensitive to parameterizations of these physical processes (Yamazaki, 1988).This study focuses on these problems by using some versions of GCMs of the Meteorological Research Institute. The results include the evaluation of total snow-cover feedbacks as part of internal dynamics of climatic change from 12-year GCM integration, and of the effect of anomalous snow cover over Eurasia in late winter on land surface conditions and atmospheric circulations in the succeeding seasons.


2021 ◽  
Author(s):  
Paolo Ruggieri ◽  
Marianna Benassi ◽  
Stefano Materia ◽  
Daniele Peano ◽  
Constantin Ardilouze ◽  
...  

<p>Seasonal climate predictions leverage on many predictable or persistent components of the Earth system that can modify the state of the atmosphere and of relant weather related variable such as temprature and precipitation. With a dominant role of the ocean, the land surface provides predictability through various mechanisms, including snow cover, with particular reference to Autumn snow cover over the Eurasian continent. The snow cover alters the energy exchange between land surface and atmosphere and induces a diabatic cooling that in turn can affect the atmosphere both locally and remotely. Lagged relationships between snow cover in Eurasia and atmospheric modes of variability in the Northern Hemisphere have been investigated and documented but are deemed to be non-stationary and climate models typically do not reproduce observed relationships with consensus. The role of Autumn Eurasian snow in recent dynamical seasonal forecasts is therefore unclear. In this study we assess the role of Eurasian snow cover in a set of 5 operational seasonal forecast system characterized by a large ensemble size and a high atmospheric and oceanic resolution. Results are compemented with a set of targeted idealised simulations with atmospheric general circulation models forced by different snow cover conditions. Forecast systems reproduce realistically regional changes of the surface energy balance associated with snow cover variability. Retrospective forecasts and idealised sensitivity experiments converge in identifying a coherent change of the circulation in the Northern Hemisphere. This is compatible with a lagged but fast feedback from the snow to the Arctic Oscillation trough a tropospheric pathway.</p>


2021 ◽  
Author(s):  
Martin Wegmann ◽  
Yvan Orsolini ◽  
Antje Weisheimer ◽  
Bart van den Hurk ◽  
Gerrit Lohmann

<p>As the leading climate mode to explain wintertime climate variability over Europe, the North Atlantic Oscillation (NAO) has been extensively studied over the last decades. Recently, studies highlighted the state of the Northern Hemispheric cryosphere as possible predictor for the wintertime NAO (Cohen et al. 2014). Although several studies could find seasonal prediction skill in reanalysis data (Orsolini et al. 2016, Duville et al. 2017,Han & Sun 2018), experiments with ocean-atmosphere general circulation models (AOGCMs) still show conflicting results (Furtado et al. 2015, Handorf et al. 2015, Francis 2017, Gastineau et al. 2017). </p><p>Here we use two kinds ECMWF seasonal prediction ensembles starting with November initial conditions taken from the long-term reanalysis ERA-20C and forecasting the following three winter months. Besides the 110-year ensemble of 50 members representing internal variability of the atmosphere, we investigate a second ensemble of 20 members where initial conditions are split between low and high snow cover years for the Northern Hemisphere. We compare two recently used Eurasian snow cover indices for their skill in predicting winter climate for the European continent. Analyzing the two forecast experiments, we found that prediction runs starting with high snow index values in November result in significantly more negative NAO states in the following winter (DJF), which in turn modulates near surface temperatures. We track the atmospheric anomalies triggered by the high snow index through the tropo- and stratosphere as well as for the individual winter months to provide a physical explanation for the formation of this particular climate state.</p><p> </p>


2015 ◽  
Vol 45 (9-10) ◽  
pp. 2591-2605 ◽  
Author(s):  
Jason C. Furtado ◽  
Judah L. Cohen ◽  
Amy H. Butler ◽  
Emily E. Riddle ◽  
Arun Kumar

2021 ◽  
Author(s):  
Xinping Xu ◽  
Shengping He ◽  
Yongqi Gao ◽  
Botao Zhou ◽  
Huijun Wang

AbstractPrevious modelling and observational studies have shown discrepancies in the interannual relationship of winter surface air temperature (SAT) between Arctic and East Asia, stimulating the debate about whether Arctic change can influence midlatitude climate. This study uses two sets of coordinated experiments (EXP1 and EXP2) from six different atmospheric general circulation models. Both EXP1 and EXP2 consist of 130 ensemble members, each of which in EXP1 (EXP2) was forced by the same observed daily varying sea ice and daily varying (daily climatological) sea surface temperature (SST) for 1982–2014 but with different atmospheric initial conditions. Large spread exists among ensemble members in simulating the Arctic–East Asian SAT relationship. Only a fraction of ensemble members can reproduce the observed deep Arctic warming–cold continent pattern which extends from surface to upper troposphere, implying the important role of atmospheric internal variability. The mechanisms of deep Arctic warming and shallow Arctic warming are further distinguished. Arctic warming aloft is caused primarily by poleward moisture transport, which in conjunction with the surface warming coupled with sea ice melting constitutes the surface-amplified deep Arctic warming throughout the troposphere. These processes associated with the deep Arctic warming may be related to the forcing of remote SST when there is favorable atmospheric circulation such as Rossby wave train propagating from the North Atlantic into the Arctic.


Sign in / Sign up

Export Citation Format

Share Document