Stratospheric polar vortex influence on Northern Hemisphere winter climate variability

2009 ◽  
Vol 36 (18) ◽  
Author(s):  
H. Douville
2020 ◽  
Author(s):  
Jessica Oehrlein ◽  
Gabriel Chiodo ◽  
Lorenzo M. Polvani

Abstract. Modeling and observational studies have reported effects of stratospheric ozone extremes on Northern Hemisphere spring climate. Recent work has further suggested that the coupling of ozone chemistry and dynamics amplifies the surface response to midwinter sudden stratospheric warmings (SSWs). Here, we study the importance of interactive ozone chemistry in representing the stratospheric polar vortex and Northern Hemisphere winter surface climate variability. We contrast two simulations from the interactive and specified chemistry (and thus ozone) versions of the Whole Atmosphere Community Climate Model, designed to isolate the impact of interactive ozone on polar vortex variability. In particular, we analyze the response with and without interactive chemistry to midwinter SSWs, March SSWs, and strong polar vortex events (SPVs). With interactive chemistry, the stratospheric polar vortex is stronger, and more SPVs occur, but we find little effect on the frequency of midwinter SSWs. At the surface, interactive chemistry results in a pattern resembling a more negative North Atlantic Oscillation following midwinter SSWs, but with little impact on the surface signatures of late winter SSWs and SPVs. These results suggest that including interactive ozone chemistry is important for representing North Atlantic and European winter climate variability.


2020 ◽  
Vol 20 (17) ◽  
pp. 10531-10544
Author(s):  
Jessica Oehrlein ◽  
Gabriel Chiodo ◽  
Lorenzo M. Polvani

Abstract. Modeling and observational studies have reported effects of stratospheric ozone extremes on Northern Hemisphere spring climate. Recent work has further suggested that the coupling of ozone chemistry and dynamics amplifies the surface response to midwinter sudden stratospheric warmings (SSWs). Here we study the importance of interactive ozone chemistry in representing the stratospheric polar vortex and Northern Hemisphere winter surface climate variability. We contrast two simulations from the interactive and specified chemistry (and thus ozone) versions of the Whole Atmosphere Community Climate Model, which is designed to isolate the impact of interactive ozone on polar vortex variability. In particular, we analyze the response with and without interactive chemistry to midwinter SSWs, March SSWs, and strong polar vortex events (SPVs). With interactive chemistry, the stratospheric polar vortex is stronger and more SPVs occur, but we find little effect on the frequency of midwinter SSWs. At the surface, interactive chemistry results in a pattern resembling a more negative North Atlantic Oscillation following midwinter SSWs but with little impact on the surface signatures of late winter SSWs and SPVs. These results suggest that including interactive ozone chemistry is important for representing North Atlantic and European winter climate variability.


2018 ◽  
Vol 45 (7) ◽  
pp. 3255-3263 ◽  
Author(s):  
Fumiaki Ogawa ◽  
Noel Keenlyside ◽  
Yongqi Gao ◽  
Torben Koenigk ◽  
Shuting Yang ◽  
...  

2021 ◽  
Author(s):  
Amy Butler ◽  
Alexey Karpechko ◽  
Chaim Garfinkel

Abstract Variability in the circumpolar westerly winds of the Northern Hemisphere winter polar stratosphere-- the stratospheric polar vortex-- has a known downward influence on the extratropical surface climate on sub-seasonal timescales. On longer timescales, observed trends towards a weakening stratospheric polar vortex have been linked to cooling surface temperatures over Eurasia from 1990-2009. Here, we show that 10-40 year polar vortex weakening trends occur as often as strengthening trends in large-ensemble historical climate simulations, and that decadal variability in polar vortex trends is significantly linked to decadal variability in regional surface temperature trends across the Northern Hemisphere even as the climate warms. We find that 74% of ensemble members with cooling trends over Eurasia during an 1850-2099 climate simulation also exhibit a weakening polar vortex, while 70% of members with accelerated warming over Eurasia exhibit a strengthening polar vortex. Decadal variability in the polar vortex thus modulates extratropical anthropogenically-forced warming trends.


2004 ◽  
Vol 61 (23) ◽  
pp. 2777-2796 ◽  
Author(s):  
Lesley J. Gray ◽  
Simon Crooks ◽  
Charlotte Pascoe ◽  
Sarah Sparrow ◽  
Michael Palmer

Abstract The interaction of the 11-yr solar cycle (SC) and the quasi-biennial oscillation (QBO) and their influence on the Northern Hemisphere (NH) polar vortex are studied using idealized model experiments and ECMWF Re-Analysis (ERA-40). In the model experiments, the sensitivity of the NH polar vortex to imposed easterlies at equatorial/subtropical latitudes over various height ranges is tested to explore the possible influence from zonal wind anomalies associated with the QBO and the 11-yr SC in those regions. The experiments show that the timing of the modeled stratospheric sudden warmings (SSWs) is sensitive to the imposed easterlies at the equator/subtropics. When easterlies are imposed in the equatorial or subtropical upper stratosphere, the onset of the SSWs is earlier. A mechanism is proposed in which zonal wind anomalies in the equatorial/subtropical upper stratosphere associated with the QBO and 11-yr SC either reinforce each other or cancel each other out. When they reinforce, as in Smin–QBO-east (Smin/E) and Smax–QBO-west (Smax/W), it is suggested that the resulting anomaly is large enough to influence the development of the Aleutian high and hence the time of onset of the SSWs. Although highly speculative, this mechanism may help to understand the puzzling observations that major warmings often occur in Smax/W years even though there is no strong waveguide provided by the QBO winds in the lower equatorial stratosphere. The ERA-40 data are used to investigate the QBO and solar signals and to determine whether the observations support the proposed mechanism. Composites of ERA-40 zonally averaged zonal winds based on the QBO (E/W), the SC (min/max), and both (Smin/E, Smin/W, Smax/E, Smax/W) are examined, with emphasis on the Northern Hemisphere winter vortex evolution. The major findings are that QBO/E years are more disturbed than QBO/W years, primarily during early winter. Sudden warmings in Smax years tend to occur later than in Smin years. Midwinter warmings are more likely during Smin/E and Smax/W years, although the latter result is only barely statistically significant at the 75% level. The data show some support for the proposed mechanism, but many more years are required before it can be fully tested.


Sign in / Sign up

Export Citation Format

Share Document