scholarly journals Transoceanic infragravity waves impacting Antarctic ice shelves

2010 ◽  
Vol 37 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Peter D. Bromirski ◽  
Olga V. Sergienko ◽  
Douglas R. MacAyeal
2017 ◽  
Vol 122 (7) ◽  
pp. 5786-5801 ◽  
Author(s):  
P. D. Bromirski ◽  
Z. Chen ◽  
R. A. Stephen ◽  
P. Gerstoft ◽  
D. Arcas ◽  
...  

Author(s):  
T. C. Lippmann ◽  
T. H. C. Herbers ◽  
E. B. Thornton
Keyword(s):  

1982 ◽  
Vol 3 ◽  
pp. 32-35 ◽  
Author(s):  
R. L. Brooks

During the operational lifetime of the Seasat altimeter from 3 July to 10 October 1978, more than 450 overflights were made over East Antarctica inland to latitude 72°S. An analysis of selected passes over a variety of ice features demonstrates that the oceanographic altimeter performed surprisingly well over the ice sheet and ice shelves, acquiring useful measurements during approximately 70% of each pass. The altimeter's onboard tracking system dampened out the ice-surface elevations, but post-flight retracking of the stored return waveforms reveals excellent ice-surface details. After waveform retracking, the altimeter repeatability is better than ±1 m.


Author(s):  
Olga Kuznetsova ◽  
Olga Kuznetsova ◽  
Yana Saprykina ◽  
Yana Saprykina ◽  
Boris Divinsky ◽  
...  

Based on numerical modelling evolution of beach under waves with height 1,0-1,5 m and period 7,5 and 10,6 sec as well as spectral wave parameters varying cross-shore analysed. The beach reformation of coastal zone relief is spatially uneven. It is established that upper part of underwater beach profile become terraced and width of the terrace is in direct pro-portion to wave height and period on the seaward boundary but inversely to angle of wave energy spreading. In addition it was ascertain that the greatest transfiguration of profile was accompanied by existence of bound infragravity waves, smaller part of its energy and shorter mean wave period as well as more significant roller energy.


2021 ◽  
Vol 41 (1) ◽  
pp. 35-41
Author(s):  
Greg Abram ◽  
Francesca Samsel ◽  
Mark R. Petersen ◽  
Xylar Asay-Davis ◽  
Darin Comeau ◽  
...  

2020 ◽  
pp. 1-11
Author(s):  
Emily A. Hill ◽  
G. Hilmar Gudmundsson ◽  
J. Rachel Carr ◽  
Chris R. Stokes ◽  
Helen M. King

Abstract Ice shelves restrain flow from the Greenland and Antarctic ice sheets. Climate-ocean warming could force thinning or collapse of floating ice shelves and subsequently accelerate flow, increase ice discharge and raise global mean sea levels. Petermann Glacier (PG), northwest Greenland, recently lost large sections of its ice shelf, but its response to total ice shelf loss in the future remains uncertain. Here, we use the ice flow model Úa to assess the sensitivity of PG to changes in ice shelf extent, and to estimate the resultant loss of grounded ice and contribution to sea level rise. Our results have shown that under several scenarios of ice shelf thinning and retreat, removal of the shelf will not contribute substantially to global mean sea level (<1 mm). We hypothesize that grounded ice loss was limited by the stabilization of the grounding line at a topographic high ~12 km inland of its current grounding line position. Further inland, the likelihood of a narrow fjord that slopes seawards suggests that PG is likely to remain insensitive to terminus changes in the near future.


2019 ◽  
Vol 13 (7) ◽  
pp. 1801-1817 ◽  
Author(s):  
Tyler C. Sutterley ◽  
Thorsten Markus ◽  
Thomas A. Neumann ◽  
Michiel van den Broeke ◽  
J. Melchior van Wessem ◽  
...  

Abstract. We calculate rates of ice thickness change and bottom melt for ice shelves in West Antarctica and the Antarctic Peninsula from a combination of elevation measurements from NASA–CECS Antarctic ice mapping campaigns and NASA Operation IceBridge corrected for oceanic processes from measurements and models, surface velocity measurements from synthetic aperture radar, and high-resolution outputs from regional climate models. The ice thickness change rates are calculated in a Lagrangian reference frame to reduce the effects from advection of sharp vertical features, such as cracks and crevasses, that can saturate Eulerian-derived estimates. We use our method over different ice shelves in Antarctica, which vary in terms of size, repeat coverage from airborne altimetry, and dominant processes governing their recent changes. We find that the Larsen-C Ice Shelf is close to steady state over our observation period with spatial variations in ice thickness largely due to the flux divergence of the shelf. Firn and surface processes are responsible for some short-term variability in ice thickness of the Larsen-C Ice Shelf over the time period. The Wilkins Ice Shelf is sensitive to short-timescale coastal and upper-ocean processes, and basal melt is the dominant contributor to the ice thickness change over the period. At the Pine Island Ice Shelf in the critical region near the grounding zone, we find that ice shelf thickness change rates exceed 40 m yr−1, with the change dominated by strong submarine melting. Regions near the grounding zones of the Dotson and Crosson ice shelves are decreasing in thickness at rates greater than 40 m yr−1, also due to intense basal melt. NASA–CECS Antarctic ice mapping and NASA Operation IceBridge campaigns provide validation datasets for floating ice shelves at moderately high resolution when coregistered using Lagrangian methods.


1999 ◽  
Vol 29 ◽  
pp. 231-238 ◽  
Author(s):  
U. Nixdorf ◽  
D. Steinhage ◽  
U. Meyer ◽  
L. Hempel ◽  
M. Jenett ◽  
...  

AbstractSince 1994 the Alfred Wegener Institute (AWI) has operated an airborne radio-echo sounding system for remote-sensing studies of the polar ice caps in Antarctica and in Greenland. It is used to map ice thicknesses and internal layernigs of glaciers, ice sheets and ice shelves, and is capable of penetrating ice thicknesses of up to 4 km. The system was designed and built by AWI in cooperation with Aerodata Flugmeßtechnik GmbH, Technische Umversitat Hamburg-Harburg and the Deutsches Zentrum fur Luft- und Raumfahrt e.V. The system uses state-of-the-art techniques, and results in high vertical (5 m) as well as along-track (3.25 m) resolution. The radar signal is a 150 MHz burst with a duration of 60 or 600 ns. The peak power is 1.6 kW, and the system sensitivity is 190 dB. The short backfire principle has been adopted and optimized for antennae used on Polar2, a Dormer 228-100 aircraft, resulting in an antenna gain of 14 dB each. Digital data recording allows further processing. The quality of the recorded data can be monitored on screen and as online analogue plots during the flight.


Sign in / Sign up

Export Citation Format

Share Document