Improved retrieval of aerosol size-resolved properties from moderate resolution imaging spectroradiometer over India: Role of aerosol model and surface reflectance

2010 ◽  
Vol 115 (D18) ◽  
Author(s):  
H. Jethva ◽  
S. K. Satheesh ◽  
J. Srinivasan ◽  
R. C. Levy
2011 ◽  
Vol 55 (1) ◽  
pp. 60-63 ◽  
Author(s):  
Alo Eenmäe ◽  
Tiit Nilson ◽  
Mait Lang

Abstract The MODIS (The Moderate Resolution Imaging Spectroradiometer) yearly NPP (Net Primary Production) 1 km resolution products were collected over Estonia for years 2000-2010. The MODIS NPP product for forest pixels showed a clear West-East decreasing trend over the Estonian territory. At the same time the trunk volume increment estimates extracted from the Estonian national statistics averaged over the same period showed the opposite trend. The MODIS NPP algorithm seems to overestimate the contribution of meteorological variables and to ignore the role of soil fertility differences. To improve the predictive power of MODIS algorithm to describe local NPP differences, the local meteorological data with higher spatial resolution should be used as an input in the NPP calculations, whereas the algorithm should be modified by optimizing the input parameters and including parameters of soil fertility into the calculation scheme.


2015 ◽  
Vol 8 (12) ◽  
pp. 5237-5249 ◽  
Author(s):  
E. Jäkel ◽  
B. Mey ◽  
R. Levy ◽  
X. Gu ◽  
T. Yu ◽  
...  

Abstract. MODIS (MOderate-resolution Imaging Spectroradiometer) retrievals of aerosol optical depth (AOD) are biased over urban areas, primarily because the reflectance characteristics of urban surfaces are different than that assumed by the retrieval algorithm. Specifically, the operational "dark-target" retrieval is tuned towards vegetated (dark) surfaces and assumes a spectral relationship to estimate the surface reflectance in blue and red wavelengths. From airborne measurements of surface reflectance over the city of Zhongshan, China, were collected that could replace the assumptions within the MODIS retrieval algorithm. The subsequent impact was tested upon two versions of the operational algorithm, Collections 5 and 6 (C5 and C6). AOD retrieval results of the operational and modified algorithms were compared for a specific case study over Zhongshan to show minor differences between them all. However, the Zhongshan-based spectral surface relationship was applied to a much larger urban sample, specifically to the MODIS data taken over Beijing between 2010 and 2014. These results were compared directly to ground-based AERONET (AErosol RObotic NETwork) measurements of AOD. A significant reduction of the differences between the AOD retrieved by the modified algorithms and AERONET was found, whereby the mean difference decreased from 0.27±0.14 for the operational C5 and 0.19±0.12 for the operational C6 to 0.10±0.15 and -0.02±0.17 by using the modified C5 and C6 retrievals. Since the modified algorithms assume a higher contribution by the surface to the total measured reflectance from MODIS, consequently the overestimation of AOD by the operational methods is reduced. Furthermore, the sensitivity of the MODIS AOD retrieval with respect to different surface types was investigated. Radiative transfer simulations were performed to model reflectances at top of atmosphere for predefined aerosol properties. The reflectance data were used as input for the retrieval methods. It was shown that the operational MODIS AOD retrieval over land reproduces the AOD reference input of 0.85 for dark surface types (retrieved AOD = 0.87 (C5)). An overestimation of AOD = 0.99 is found for urban surfaces, whereas the modified C5 algorithm shows a good performance with a retrieved value of AOD = 0.86.


2013 ◽  
Vol 13 (21) ◽  
pp. 10827-10845 ◽  
Author(s):  
M. Yoshida ◽  
J. M. Haywood ◽  
T. Yokohata ◽  
H. Murakami ◽  
T. Nakajima

Abstract. There is great uncertainty regarding the role of mineral dust aerosols in Earth's climate system. One reason for this uncertainty is that the optical properties of mineral dust, such as its single scattering albedo (the ratio of scattering to total extinction), are poorly constrained because ground observations are limited to a few locations and satellite standard products are not available due to the excessively bright surface of the desert in the visible wavelength, which makes robust retrievals difficult. Here, we develop a method to estimate the spatial distributions of the aerosol single scattering albedo (ω0) and optical depth (τa), with daily 1°×1° spatial resolution using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) as well as model simulations of radiative transfer. This approach is based on the "critical surface reflectance" method developed in the literature, which estimates ω0 from the top of the atmospheric radiance. We estimate the uncertainties in ω0 over the Sahara (Asia) to be approximately 0.020 and 0.010 (0.023 and 0.017) for bands 9 and 1, respectively, while the uncertainty in τa is approximately 0.235 and 0.228 (0.464 and 0.370) for bands 9 and 1, respectively. The 5–95% range of the spatial distribution of ω0 over the Sahara (Asia) is approximately 0.90–0.94 and 0.96–0.99 (0.87–0.94 and 0.89–0.97) for bands 9 and 1, respectively, and that of τa over the Sahara (Asia) is approximately 0.8–1.4 and 0.8–1.7 (0.7–2.0 and 0.7–1.9) for bands 9 and 1, respectively. The results for the Sahara indicate a good correlation between ω0 and the surface reflectance, and between ω0 and τa. However, the relationships between ω0, τa, and surface reflectance are less clear in Asia than in the Sahara, and the ω0 values are smaller than those in the Sahara. The regions with small ω0 values are consistent with the regions where coal-burning smoke and carbonaceous aerosols are reported to be transported in previous studies. Because the coal-burning and carbonaceous aerosols are known to be more absorptive and have smaller ω0 values than dust aerosols, our results indicate that the dust aerosols in Asia are contaminated by these anthropogenic aerosols. The spatial distribution of dust optical properties obtained in our work could be useful in understanding the role of dust aerosols in Earth's climate system, most likely through future collaboration with regional and global modelling studies.


2021 ◽  
Vol 14 (5) ◽  
pp. 3449-3468
Author(s):  
Yingxi R. Shi ◽  
Robert C. Levy ◽  
Leiku Yang ◽  
Lorraine A. Remer ◽  
Shana Mattoo ◽  
...  

Abstract. Satellite aerosol products such as the Dark Target (DT) produced from the MODerate resolution Imaging Spectroradiometer (MODIS) are useful for monitoring the progress of air pollution. Unfortunately, the DT often fails to retrieve during the heaviest aerosol events as well as the more moderate events in winter. Some of the literature attributes this lack of retrieval to the cloud mask. However, we found this lack of retrieval is mainly traced to thresholds used for masking of inland water and snow. Modifications to these two masks greatly increase 50 % of the retrievals of aerosol optical depth at 0.55 µm (AOD) greater than 1.0. The “extra”-high-AOD retrievals tend to be biased when compared with a ground-based sun photometer (AErosol RObotic NETwork, AERONET). Reducing bias in new retrievals requires two additional steps. One is an update to the assumed aerosol optical properties (aerosol model); the haze in this region is both less absorbing and lower in altitude than what is assumed in the global algorithm. The second is accounting for the scale height of the aerosol, specifically that the heavy-aerosol events in the region are much closer to the surface than what is assumed by the global DT algorithm. The resulting combination of modified masking thresholds, new aerosol model, and lower aerosol layer scale height was applied to 3 months of MODIS observations (January–March 2013) over eastern China. After these two additional steps are implemented, the significant increase in new retrievals introduces no overall bias at a high-AOD regime but does degrade other overall validation statistics. We also find that the research algorithm is able to identify additional pollution events that AERONET instruments may not due to different spatial sampling. Mean AOD retrieved from the research algorithm increases from 0.11 to 0.18 compared to values calculated from the operational DT algorithm during January to March of 2013 over the study area. But near Beijing, where the severe pollution occurs, the new algorithm increases AOD by as much as 3.0 for each 0.5∘ grid box over the previous operational-algorithm values.


2012 ◽  
Vol 12 (12) ◽  
pp. 31107-31151
Author(s):  
M. Yoshida ◽  
J. M. Haywood ◽  
B. T. Johnson ◽  
H. Murakami ◽  
T. Nakajima

Abstract. There is a great deal of uncertainty surrounding the role of mineral dust aerosols in the earth's climate system. One reason for this uncertainty is that the optical properties of mineral dust, such as its single scattering albedo (the ratio of scattering to total extinction), are poorly understood because ground observations are limited to several locations and the satellite standard products are not available due to the excessively bright surface of the desert in the visible wavelength. We develop a method in this paper to estimate the spatial distributions of the aerosol single scattering albedo (ω0) and optical depth (τa), with daily 1 degree latitude and 1 degree longitude resolution, using data from Moderate Resolution Imaging Spectroradiometer (MODIS), as well as model simulations of radiative transfer. This approach is based on the "critical surface reflectance" method developed in the literature, which estimates ω0 from the top of the atmospheric radiance. We confirm that the uncertainties in our estimation of ω0 and τa are suitably minor and that the characteristic spatial distributions estimated over the Sahara and Asia are significant. The results for the Sahara indicate good correlation between ω0 and the surface reflectance and between ω0 and τa. Therefore, ω0 is determined mainly by the mineral composition of surface dust and/or the optical depth of airborne dust in the Sahara. On the other hand, the relationships between ω0, τa, and the surface reflectance are less clear in Asia than in the Sahara, and the values of ω0 are smaller than those in the Sahara. The regions with small ω0 values are consistent with the regions where coal-burning smoke and carbonaceous aerosols are thought to be transported, as reported in previous studies. Because the coal-burning and carbonaceous aerosols are known to be more absorptive and have smaller ω0 values than dust aerosols, our results indicate that the dust aerosols in Asia are contaminated by these anthropogenic aerosols. The spatial distribution of dust optical properties obtained in our work could be useful in understanding the roles of dust aerosols in the earth's climate system, most likely through future collaboration with regional and global modelling studies.


2020 ◽  
Author(s):  
Yingxi R. Shi ◽  
Robert C. Levy ◽  
Leiku Yang ◽  
Lorraine A. Remer ◽  
Shana Mattoo ◽  
...  

Abstract. Satellite aerosol products such as the Dark Target (DT) produced from the MODerate resolution Imaging Spectroradiometer (MODIS), are useful for monitoring the progress of air pollution. Unfortunately, the DT often fails to retrieve during the heaviest aerosol events as well as the more moderate events in winter. Some literatures attribute this lack of retrieval to cloud mask. However, we found this lack of retrieval is mainly traced to thresholds used for masking of inland water and snow. Modifications to these two masks greatly increase the coverage of retrievals overall (50 %) and double the retrievals of aerosol optical depth at 0.55 µm (AOD) greater than 1.0. The extra high AOD retrievals tend to be biased when compared with ground-based sunphotometer (AERONET). Reducing bias in new retrievals requires two additional steps. One is an update to the assumed aerosol optical properties (aerosol model) – the haze in this region is both less absorbing and lower in altitude than what is assumed in the global algorithm. The second is accounting for the scale height of the aerosol, specifically that the heavy aerosol events in the region are much closer to the surface than what is assumed by the global DT algorithm. The resulting combination of modified masking thresholds, new aerosol model, and lower aerosol layer scale height was applied to three months of MODIS observations (Jan–March 2013) over eastern China. When compared with AERONET, 70 % of the research algorithm retrievals fall within ±(0.08 + 0.17 × AOD). We also find that the research algorithm is able to identify additional pollution events that a triad of AERONET instruments surrounding Beijing could not. Mean AOD retrieved from the research algorithm increases from 0.11 to 0.18 compared to values calculated from the operational DT algorithm during January to March of 2013 over the study area. But near Beijing where the severe pollution occurs, the new algorithm increases AOD by as much as 3.0 for each 0.5° grid box, over the previous operational algorithm values.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 215 ◽  
Author(s):  
Ding Li ◽  
Kai Qin ◽  
Lixin Wu ◽  
Jian Xu ◽  
Husi Letu ◽  
...  

A novel geostationary satellite, the H8/AHI (Himawari-8/Advanced Himawari Imager), greatly improved the scan times per day covering East Asia, and the operational products have been stably provided for a period of time. Currently, atmospheric aerosol pollution is a major concern in China. H8/AHI aerosol products with a high temporal resolution are helpful for real-time monitoring of subtle aerosol variation. However, the H8/AHI aerosol optical thickness (AOT) product has been updated three times since its launch, and the evaluation of this dataset is currently rare. In order to validate its accuracy, this study compared the H8/AHI Level-3 (L3) hourly AOT products of all versions with measurements obtained from eleven sunphotometer sites located in eastern China from 2015 to 2018. Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 AOT products from the same period were also used for inter-comparison. Although the H8/AHI AOT retrievals in version 010 show a moderate agreement with ground-based observations (correlation coefficient (R): 0.66–0.85), and the time series analysis shows that it can effectively monitor hourly variation, it suffers from an obvious underestimation of 0.3 compared to ground-based and MODIS observations. After the retrieval algorithm updated the predefined aerosol model, the overall underestimation of AHI AOTs was solved (version 010 slope: 0.43–0.62, version 030 slope: 0.75–1.02), and the AOTs in version 030 show a high agreement with observations from ten sites (R: 0.73–0.91). In addition, the surface reflectance dataset derived from the minimum reflectivity model in version 010 is inaccurate in parts of eastern China, for both “bright” and “dark” land surfaces, which leads to the overestimation of the AOT values under low aerosol loads at the Beijing and Xianghe sites. After the update of the surface dataset in version 030, this phenomenon was alleviated, resulting in no significant difference in scatterplots under different surface conditions. The AOTs of H8/AHI version 030 show a significant improvement compared to the previous two versions, but the spatial distribution of AHI is still different from MODIS AOT products due to the differences in sensors and algorithms. Therefore, although the evaluation in this study demonstrates the effectiveness of H8/AHI AOT products for aerosol monitoring at fine temporal resolutions, the performance of H8/AHI AOT products needs further study by considering more conditions.


2017 ◽  
Vol 11 (4) ◽  
pp. 1575-1589 ◽  
Author(s):  
John Faulkner Burkhart ◽  
Arve Kylling ◽  
Crystal B. Schaaf ◽  
Zhuosen Wang ◽  
Wiley Bogren ◽  
...  

Abstract. Albedo is a fundamental parameter in earth sciences, and many analyses utilize the Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo (MCD43) algorithms. While derivative albedo products have been evaluated over Greenland, we present a novel, direct comparison with nadir surface reflectance collected from an unmanned aerial system (UAS). The UAS was flown from Summit, Greenland, on 210 km transects coincident with the MODIS sensor overpass on board the Aqua and Terra satellites on 5 and 6 August 2010. Clear-sky acquisitions were available from the overpasses within 2 h of the UAS flights. The UAS was equipped with upward- and downward-looking spectrometers (300–920 nm) with a spectral resolution of 10 nm, allowing for direct integration into the MODIS bands 1, 3, and 4. The data provide a unique opportunity to directly compare UAS nadir reflectance with the MODIS nadir BRDF-adjusted surface reflectance (NBAR) products. The data show UAS measurements are slightly higher than the MODIS NBARs for all bands but agree within their stated uncertainties. Differences in variability are observed as expected due to different footprints of the platforms. The UAS data demonstrate potentially large sub-pixel variability of MODIS reflectance products and the potential to explore this variability using the UAS as a platform. It is also found that, even at the low elevations flown typically by a UAS, reflectance measurements may be influenced by haze if present at and/or below the flight altitude of the UAS. This impact could explain some differences between data from the two platforms and should be considered in any use of airborne platforms.


2020 ◽  
Vol 59 (1) ◽  
pp. 83-102 ◽  
Author(s):  
Kara K. Voss ◽  
Amato T. Evan

AbstractBy mass, dust is the largest contributor to global aerosol burden, yet long-term observational records of dust, particularly over the ocean, are limited. Here, two nearly global observational datasets of dust aerosol optical depth τd are created primarily on the basis of optical measurements of the aerosol column from 1) the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite spanning from 2001 to 2018 and 2) the Advanced Very High Resolution Radiometer (AVHRR) from 1981 to 2018. The quality of the new data is assessed by comparison with existing dust datasets that are spatially more limited. Between 2001 and 2018, τd decreased over Asia and increased significantly over the Sahara, Middle East, and parts of eastern Europe, with the largest increase found over the Aral Sea where emissive playa surfaces have been exposed. These daily, observational, and nearly global records of dust will allow for improvement in understanding the role of dust in climate variability.


Sign in / Sign up

Export Citation Format

Share Document