scholarly journals Clear and cloudy sky infrared brightness temperature assimilation using an ensemble Kalman filter

2010 ◽  
Vol 115 (D19) ◽  
Author(s):  
Jason A. Otkin
2012 ◽  
Vol 140 (2) ◽  
pp. 543-561 ◽  
Author(s):  
Jason A. Otkin

A regional-scale Observing System Simulation Experiment is used to examine how changes in the horizontal covariance localization radius employed during the assimilation of infrared brightness temperature observations in an ensemble Kalman filter assimilation system impacts the accuracy of atmospheric analyses and short-range model forecasts. The case study tracks the evolution of several extratropical weather systems that occurred across the contiguous United States during 7–8 January 2008. Overall, the results indicate that assimilating 8.5-μm brightness temperatures improves the cloud analysis and forecast accuracy, but has the tendency to degrade the water vapor mixing ratio and thermodynamic fields unless a small localization radius is used. Vertical cross sections showed that varying the localization radius had a minimal impact on the shape of the analysis increments; however, their magnitude consistently increased with increasing localization radius. By the end of the assimilation period, the moisture, temperature, cloud, and wind errors generally decreased with decreasing localization radius and became similar to the Control case in which only conventional observations were assimilated if the shortest localization radius was used. Short-range ensemble forecasts showed that the large positive impact of the infrared observations on the final cloud analysis diminished rapidly during the forecast period, which indicates that it is difficult to maintain beneficial changes to the cloud analysis if the moisture and thermodynamic forcing controlling the cloud evolution are not simultaneously improved. These results show that although assimilation of infrared observations consistently improves the cloud field regardless of the length of the localization radius, it may be necessary to use a smaller radius to also improve the accuracy of the moisture and thermodynamic fields.


2012 ◽  
Vol 132 (10) ◽  
pp. 1617-1625
Author(s):  
Sirichai Pornsarayouth ◽  
Masaki Yamakita

Author(s):  
Nicolas Papadakis ◽  
Etienne Mémin ◽  
Anne Cuzol ◽  
Nicolas Gengembre

2021 ◽  
Vol 14 (6) ◽  
Author(s):  
Jinming Yang ◽  
Chengzhi Li

AbstractSnow depth mirrors regional climate change and is a vital parameter for medium- and long-term numerical climate prediction, numerical simulation of land-surface hydrological process, and water resource assessment. However, the quality of the available snow depth products retrieved from remote sensing is inevitably affected by cloud and mountain shadow, and the spatiotemporal resolution of the snow depth data cannot meet the need of hydrological research and decision-making assistance. Therefore, a method to enhance the accuracy of snow depth data is urgently required. In the present study, three kinds of snow depth data which included the D-InSAR data retrieved from the remote sensing images of Sentinel-1 synthetic aperture radar, the automatically measured data using ultrasonic snow depth detectors, and the manually measured data were assimilated based on ensemble Kalman filter. The assimilated snow depth data were spatiotemporally consecutive and integrated. Under the constraint of the measured data, the accuracy of the assimilated snow depth data was higher and met the need of subsequent research. The development of ultrasonic snow depth detector and the application of D-InSAR technology in snow depth inversion had greatly alleviated the insufficiency of snow depth data in types and quantity. At the same time, the assimilation of multi-source snow depth data by ensemble Kalman filter also provides high-precision data to support remote sensing hydrological research, water resource assessment, and snow disaster prevention and control program.


2021 ◽  
Vol 11 (7) ◽  
pp. 2898
Author(s):  
Humberto C. Godinez ◽  
Esteban Rougier

Simulation of fracture initiation, propagation, and arrest is a problem of interest for many applications in the scientific community. There are a number of numerical methods used for this purpose, and among the most widely accepted is the combined finite-discrete element method (FDEM). To model fracture with FDEM, material behavior is described by specifying a combination of elastic properties, strengths (in the normal and tangential directions), and energy dissipated in failure modes I and II, which are modeled by incorporating a parameterized softening curve defining a post-peak stress-displacement relationship unique to each material. In this work, we implement a data assimilation method to estimate key model parameter values with the objective of improving the calibration processes for FDEM fracture simulations. Specifically, we implement the ensemble Kalman filter assimilation method to the Hybrid Optimization Software Suite (HOSS), a FDEM-based code which was developed for the simulation of fracture and fragmentation behavior. We present a set of assimilation experiments to match the numerical results obtained for a Split Hopkinson Pressure Bar (SHPB) model with experimental observations for granite. We achieved this by calibrating a subset of model parameters. The results show a steady convergence of the assimilated parameter values towards observed time/stress curves from the SHPB observations. In particular, both tensile and shear strengths seem to be converging faster than the other parameters considered.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1520
Author(s):  
Zheng Jiang ◽  
Quanzhong Huang ◽  
Gendong Li ◽  
Guangyong Li

The parameters of water movement and solute transport models are essential for the accurate simulation of soil moisture and salinity, particularly for layered soils in field conditions. Parameter estimation can be achieved using the inverse modeling method. However, this type of method cannot fully consider the uncertainties of measurements, boundary conditions, and parameters, resulting in inaccurate estimations of parameters and predictions of state variables. The ensemble Kalman filter (EnKF) is well-suited to data assimilation and parameter prediction in Situations with large numbers of variables and uncertainties. Thus, in this study, the EnKF was used to estimate the parameters of water movement and solute transport in layered, variably saturated soils. Our results indicate that when used in conjunction with the HYDRUS-1D software (University of California Riverside, California, CA, USA) the EnKF effectively estimates parameters and predicts state variables for layered, variably saturated soils. The assimilation of factors such as the initial perturbation and ensemble size significantly affected in the simulated results. A proposed ensemble size range of 50–100 was used when applying the EnKF to the highly nonlinear hydrological models of the present study. Although the simulation results for moisture did not exhibit substantial improvement with the assimilation, the simulation of the salinity was significantly improved through the assimilation of the salinity and relative solutetransport parameters. Reducing the uncertainties in measured data can improve the goodness-of-fit in the application of the EnKF method. Sparse field condition observation data also benefited from the accurate measurement of state variables in the case of EnKF assimilation. However, the application of the EnKF algorithm for layered, variably saturated soils with hydrological models requires further study, because it is a challenging and highly nonlinear problem.


Sign in / Sign up

Export Citation Format

Share Document