scholarly journals Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review

2011 ◽  
Vol 47 (7) ◽  
Author(s):  
Martyn P. Clark ◽  
Jordy Hendrikx ◽  
Andrew G. Slater ◽  
Dmitri Kavetski ◽  
Brian Anderson ◽  
...  
SOLA ◽  
2013 ◽  
Vol 9 (0) ◽  
pp. 148-152 ◽  
Author(s):  
Masatoshi Kuribayashi ◽  
Nam Jin Noh ◽  
Taku M. Saitoh ◽  
Ichiro Tamagawa ◽  
Yasutaka Wakazuki ◽  
...  

2013 ◽  
Vol 128 ◽  
pp. 107-117 ◽  
Author(s):  
Steven Hancock ◽  
Robert Baxter ◽  
Jonathan Evans ◽  
Brian Huntley

2021 ◽  
Author(s):  
Vincent Vionnet ◽  
Colleen Mortimer ◽  
Mike Brady ◽  
Louise Arnal ◽  
Ross Brown

Abstract. In situ measurements of snow water equivalent (SWE) – the depth of water that would be produced if all the snow melted – are used in many applications including water management, flood forecasting, climate monitoring, and evaluation of hydrological and land surface models. The Canadian historical SWE dataset (CanSWE) combines manual and automated pan-Canadian SWE observations collected by national, provincial and territorial agencies as well as hydropower companies. Snow depth and derived bulk snow density are also included when available. This new dataset supersedes the previous Canadian Historical Snow Survey (CHSSD) dataset published by Brown et al. (2019), and this paper describes the efforts made to correct metadata, remove duplicate observations, and quality control records. The CanSWE dataset was compiled from 15 different sources and includes SWE information for all provinces and territories that measure SWE. Data were updated to July 2020 and new historical data from the Government of Northwest Territories, Government of Newfoundland and Labrador, Saskatchewan Water Security Agency, and Hydro Quebec were included. CanSWE includes over one million SWE measurements from 2607 different locations across Canada over the period 1928–2020. It is publicly available at https://doi.org/10.5281/zenodo.4734372 (Vionnet et al., 2021).


2021 ◽  
Vol 13 (9) ◽  
pp. 4603-4619
Author(s):  
Vincent Vionnet ◽  
Colleen Mortimer ◽  
Mike Brady ◽  
Louise Arnal ◽  
Ross Brown

Abstract. In situ measurements of water equivalent of snow cover (SWE) – the vertical depth of water that would be obtained if all the snow cover melted completely – are used in many applications including water management, flood forecasting, climate monitoring, and evaluation of hydrological and land surface models. The Canadian historical SWE dataset (CanSWE) combines manual and automated pan-Canadian SWE observations collected by national, provincial and territorial agencies as well as hydropower companies. Snow depth (SD) and bulk snow density (defined as the ratio of SWE to SD) are also included when available. This new dataset supersedes the previous Canadian Historical Snow Survey (CHSSD) dataset published by Brown et al. (2019), and this paper describes the efforts made to correct metadata, remove duplicate observations and quality control records. The CanSWE dataset was compiled from 15 different sources and includes SWE information for all provinces and territories that measure SWE. Data were updated to July 2020, and new historical data from the Government of Northwest Territories, Government of Newfoundland and Labrador, Saskatchewan Water Security Agency, and Hydro-Québec were included. CanSWE includes over 1 million SWE measurements from 2607 different locations across Canada over the period 1928–2020. It is publicly available at https://doi.org/10.5281/zenodo.4734371 (Vionnet et al., 2021).


2013 ◽  
Vol 6 (1) ◽  
pp. 2177-2212
Author(s):  
Y. Ke ◽  
L. R. Leung ◽  
M. Huang ◽  
H. Li

Abstract. Land surface heterogeneity has long been recognized as important to represent in the land surface models. In most existing land surface models, the spatial variability of surface cover is represented as subgrid composition of multiple surface cover types. In this study, we developed a new subgrid classification method (SGC) that accounts for the topographic variability of the vegetation cover. Each model grid cell was represented with a number of elevation classes and each elevation class was further described by a number of vegetation types. The numbers of elevation classes and vegetation types were variable and optimized for each model grid so that the spatial variability of both elevation and vegetation can be reasonably explained given a pre-determined total number of classes. The subgrid structure of the Community Land Model (CLM) was used as an example to illustrate the newly developed method in this study. With similar computational burden as the current subgrid vegetation representation in CLM, the new method is able to explain at least 80% of the total subgrid Plant Functional Types (PFTs) and greatly reduced the variations of elevation within each subgrid class compared to the baseline method where a single elevation class is assigned to each subgrid PFT. The new method was also evaluated against two other subgrid methods (SGC1 and SGC2) that assigned fixed numbers of elevation and vegetation classes for each model grid with different perspectives of surface cover classification. Implemented at five model resolutions (0.1°, 0.25°, 0.5°, 1.0° and 2.0°) with three maximum-allowed total number of classes Nclass of 24, 18 and 12 representing different computational burdens over the North America (NA) continent, the new method showed variable performances compared to the SGC1 and SGC2 methods. However, the advantage of the SGC method over the other two methods clearly emerged at coarser model resolutions and with moderate computational intensity (Nclass = 18) as it explained the most PFTs and elevation variability among the three subgrid methods. Spatially, the SGC method explained more elevation variability in topography-complex areas and more vegetation variability in flat areas. Furthermore, the variability of both elevation and vegetation explained by the new method was more spatially homogeneous regardless of the model resolutions and computational burdens. The SGC method will be implemented in CLM over the NA continent to assess its impacts on simulating land surface processes.


2021 ◽  
Vol 45 (2) ◽  
pp. 279-293
Author(s):  
S Garrigues ◽  
A Verhoef ◽  
E Blyth ◽  
A Wright ◽  
B Balan-Sarojini ◽  
...  

Up to now, relatively little effort has been dedicated to the quantitative assessment of the differences in spatial patterns of model outputs. In this paper, we employed a variogram-based methodology to quantify the differences in the spatial patterns of root-zone soil moisture, net radiation, and latent and sensible heat fluxes simulated by three land surface models (SURFEX/ISBA, JULES and CHTESSEL) over three European geographic domains – namely, UK, France and Spain. The model output spatial patterns were quantified through two metrics derived from the variogram: i) the variogram sill, which quantifies the degree of spatial variability of the data; and ii) the variogram integral range, which represents the spatial length scale of the data. The higher seasonal variation of the spatial variability of sensible and latent heat fluxes over France and Spain, compared to the UK, is related to a more frequent occurrence of a soil-moisture-limited evapotranspiration regime during summer dry spells in the south of France and Spain. The small differences in spatial variability of net radiation between models indicate that the spatial patterns of net radiation are mostly driven by the climate forcing data set. However, the models exhibit larger differences in latent and sensible heat flux spatial variabilities, which are related to their differences in i) soil and vegetation ancillary datasets and ii) physical process representation. The highest discrepancies in spatial patterns between models are observed for soil moisture, which is mainly related to the type of soil hydraulic function implemented in the models. This work demonstrates the capability of the variogram to enhance our understanding of the spatiotemporal structure of the uncertainties in land surface model outputs. Therefore, we strongly encourage the implementation of the variogram metrics in model intercomparison exercises.


2014 ◽  
Vol 8 (2) ◽  
pp. 487-502
Author(s):  
E. Kantzas ◽  
S. Quegan ◽  
M. Lomas ◽  
E. Zakharova

Abstract. An increasing number of studies have demonstrated significant climatic and ecological changes occurring in the northern latitudes over the past decades. As coupled Earth-system models attempt to describe and simulate the dynamics and complex feedbacks of the Arctic environment, it is important to reduce their uncertainties in short-term predictions by improving the description of both system processes and its initial state. This study focuses on snow-related variables and makes extensive use of a historical data set (1966–1996) of field snow measurements acquired across the extent of the former Soviet Union to evaluate a range of simulated snow metrics produced by several land surface models, most of them embedded in IPCC-standard climate models. We reveal model-specific failings in simulating snowpack properties such as magnitude, inter-annual variability, timings of snow water equivalent and evolution of snow density. We develop novel and model-independent methodologies that use the field snow measurements to extract the values of fresh snow density and snowpack sublimation, and exploit them to assess model outputs. By directly forcing the surface heat exchange formulation of a land surface model with field data on snow depth and snow density, we evaluate how inaccuracies in simulating snow metrics affect soil temperature, thaw depth and soil carbon decomposition. We also show how field data can be assimilated into models using optimization techniques in order to identify model defects and improve model performance.


2021 ◽  
Author(s):  
Sandy P. Harrison ◽  
Wolfgang Cramer ◽  
Oskar Franklin ◽  
Iain Colin Prentice ◽  
Han Wang ◽  
...  

2019 ◽  
Vol 13 (11) ◽  
pp. 3045-3059 ◽  
Author(s):  
Nick Rutter ◽  
Melody J. Sandells ◽  
Chris Derksen ◽  
Joshua King ◽  
Peter Toose ◽  
...  

Abstract. Spatial variability in snowpack properties negatively impacts our capacity to make direct measurements of snow water equivalent (SWE) using satellites. A comprehensive data set of snow microstructure (94 profiles at 36 sites) and snow layer thickness (9000 vertical profiles across nine trenches) collected over two winters at Trail Valley Creek, NWT, Canada, was applied in synthetic radiative transfer experiments. This allowed for robust assessment of the impact of estimation accuracy of unknown snow microstructural characteristics on the viability of SWE retrievals. Depth hoar layer thickness varied over the shortest horizontal distances, controlled by subnivean vegetation and topography, while variability in total snowpack thickness approximated that of wind slab layers. Mean horizontal correlation lengths of layer thickness were less than a metre for all layers. Depth hoar was consistently ∼30 % of total depth, and with increasing total depth the proportion of wind slab increased at the expense of the decreasing surface snow layer. Distinct differences were evident between distributions of layer properties; a single median value represented density and specific surface area (SSA) of each layer well. Spatial variability in microstructure of depth hoar layers dominated SWE retrieval errors. A depth hoar SSA estimate of around 7 % under the median value was needed to accurately retrieve SWE. In shallow snowpacks <0.6 m, depth hoar SSA estimates of ±5 %–10 % around the optimal retrieval SSA allowed SWE retrievals within a tolerance of ±30 mm. Where snowpacks were deeper than ∼30 cm, accurate values of representative SSA for depth hoar became critical as retrieval errors were exceeded if the median depth hoar SSA was applied.


Sign in / Sign up

Export Citation Format

Share Document