ON THE ROLE OF INTEGRATED GROUNDWATER-LAND SURFACE MODELS FOR GROUNDWATER SUSTAINABILITY ASSESSMENTS

2019 ◽  
Author(s):  
Hoori Ajami ◽  
◽  
Matthew F Mccabe ◽  
Jason P. Evans ◽  
Simon Stisen
Author(s):  
Christa D. Peters-Lidard ◽  
David M. Mocko ◽  
Lu Su ◽  
Dennis P. Lettenmaier ◽  
Pierre Gentine ◽  
...  

AbstractMillions of people across the globe are affected by droughts every year, and recent droughts have highlighted the considerable agricultural impacts and economic costs of these events. Monitoring the state of droughts depends on integrating multiple indicators that each capture particular aspects of hydrologic impact and various types and phases of drought. As the capabilities of land-surface models and remote sensing have improved, important physical processes such as dynamic, interactive vegetation phenology, groundwater, and snow pack evolution now support a range of drought indicators that better reflect coupled water, energy and carbon cycle processes. In this work, we discuss these advances, including newer classes of indicators that can be applied to improve the characterization of drought onset, severity and duration. We utilize a new model-based drought reconstruction to illustrate the role of dynamic phenology and groundwater in drought assessment. Further, through case studies on flash droughts, snow droughts, and drought recovery, we illustrate the potential advantages of advanced model physics and observational capabilities, especially from remote sensing, in characterizing droughts.


2021 ◽  
Author(s):  
Sandy P. Harrison ◽  
Wolfgang Cramer ◽  
Oskar Franklin ◽  
Iain Colin Prentice ◽  
Han Wang ◽  
...  

2006 ◽  
Vol 87 (10) ◽  
pp. 1367-1380 ◽  
Author(s):  
A. J. Dolman ◽  
J. Noilhan ◽  
P. Durand ◽  
C. Sarrat ◽  
A. Brut ◽  
...  

The Second Global Soil Wetness Project (GSWP-2) is an initiative to compare and evaluate 10-year simulations by a broad range of land surface models under controlled conditions. A major product of GSWP-2 is the first global gridded multimodel analysis of land surface state variables and fluxes for use by meteorologists, hydrologists, engineers, biogeochemists, agronomists, botanists, ecologists, geographers, climatologists, and educators. Simulations by 13 land models from five nations have gone into production of the analysis. The models are driven by forcing data derived from a combination of gridded atmospheric reanalyses and observations. The resulting analysis consists of multimodel means and standard deviations on the monthly time scale, including profiles of soil moisture and temperature at six levels, as well as daily and climatological (mean annual cycle) fields for over 50 land surface variables. The monthly standard deviations provide a measure of model agreement that may be used as a quality metric. An overview of key characteristics of the analysis is presented here, along with information on obtaining the data.


2012 ◽  
Vol 16 (9) ◽  
pp. 3451-3460 ◽  
Author(s):  
W. T. Crow ◽  
S. V. Kumar ◽  
J. D. Bolten

Abstract. The lagged rank cross-correlation between model-derived root-zone soil moisture estimates and remotely sensed vegetation indices (VI) is examined between January 2000 and December 2010 to quantify the skill of various soil moisture models for agricultural drought monitoring. Examined modeling strategies range from a simple antecedent precipitation index to the application of modern land surface models (LSMs) based on complex water and energy balance formulations. A quasi-global evaluation of lagged VI/soil moisture cross-correlation suggests, when globally averaged across the entire annual cycle, soil moisture estimates obtained from complex LSMs provide little added skill (< 5% in relative terms) in anticipating variations in vegetation condition relative to a simplified water accounting procedure based solely on observed precipitation. However, larger amounts of added skill (5–15% in relative terms) can be identified when focusing exclusively on the extra-tropical growing season and/or utilizing soil moisture values acquired by averaging across a multi-model ensemble.


Sign in / Sign up

Export Citation Format

Share Document