scholarly journals Canadian historical Snow Water Equivalent dataset (CanSWE, 1928–2020)

2021 ◽  
Vol 13 (9) ◽  
pp. 4603-4619
Author(s):  
Vincent Vionnet ◽  
Colleen Mortimer ◽  
Mike Brady ◽  
Louise Arnal ◽  
Ross Brown

Abstract. In situ measurements of water equivalent of snow cover (SWE) – the vertical depth of water that would be obtained if all the snow cover melted completely – are used in many applications including water management, flood forecasting, climate monitoring, and evaluation of hydrological and land surface models. The Canadian historical SWE dataset (CanSWE) combines manual and automated pan-Canadian SWE observations collected by national, provincial and territorial agencies as well as hydropower companies. Snow depth (SD) and bulk snow density (defined as the ratio of SWE to SD) are also included when available. This new dataset supersedes the previous Canadian Historical Snow Survey (CHSSD) dataset published by Brown et al. (2019), and this paper describes the efforts made to correct metadata, remove duplicate observations and quality control records. The CanSWE dataset was compiled from 15 different sources and includes SWE information for all provinces and territories that measure SWE. Data were updated to July 2020, and new historical data from the Government of Northwest Territories, Government of Newfoundland and Labrador, Saskatchewan Water Security Agency, and Hydro-Québec were included. CanSWE includes over 1 million SWE measurements from 2607 different locations across Canada over the period 1928–2020. It is publicly available at https://doi.org/10.5281/zenodo.4734371 (Vionnet et al., 2021).

2021 ◽  
Author(s):  
Vincent Vionnet ◽  
Colleen Mortimer ◽  
Mike Brady ◽  
Louise Arnal ◽  
Ross Brown

Abstract. In situ measurements of snow water equivalent (SWE) – the depth of water that would be produced if all the snow melted – are used in many applications including water management, flood forecasting, climate monitoring, and evaluation of hydrological and land surface models. The Canadian historical SWE dataset (CanSWE) combines manual and automated pan-Canadian SWE observations collected by national, provincial and territorial agencies as well as hydropower companies. Snow depth and derived bulk snow density are also included when available. This new dataset supersedes the previous Canadian Historical Snow Survey (CHSSD) dataset published by Brown et al. (2019), and this paper describes the efforts made to correct metadata, remove duplicate observations, and quality control records. The CanSWE dataset was compiled from 15 different sources and includes SWE information for all provinces and territories that measure SWE. Data were updated to July 2020 and new historical data from the Government of Northwest Territories, Government of Newfoundland and Labrador, Saskatchewan Water Security Agency, and Hydro Quebec were included. CanSWE includes over one million SWE measurements from 2607 different locations across Canada over the period 1928–2020. It is publicly available at https://doi.org/10.5281/zenodo.4734372 (Vionnet et al., 2021).


2016 ◽  
Vol 17 (5) ◽  
pp. 1467-1488 ◽  
Author(s):  
Reinel Sospedra-Alfonso ◽  
Lawrence Mudryk ◽  
William Merryfield ◽  
Chris Derksen

Abstract The ability of the Canadian Seasonal to Interannual Prediction System (CanSIPS) to provide realistic forecast initial conditions for snow cover is assessed using in situ measurements and gridded snow analyses. Forecast initial conditions for snow in CanCM3 and CanCM4 employed by CanSIPS are determined by the response of the Canadian Land Surface Scheme (CLASS) used in both models to forcing from model atmospheric fields constrained by assimilation of 6-hourly reanalysis data. These snow initial conditions are found to be representative of the daily climatology of snow water equivalent (SWE) as well as interannual variations in maximum SWE and the timing of snow onset and snowmelt observed at eight in situ measurement sites located across Canada. The level of this agreement is similar to that of three independent gridded snow analyses (MERRA, the European Space Agency’s GlobSnow, and an offline forced version of CLASS). Total Northern Hemisphere snow mass generated by the CanSIPS initialization procedure is larger for both models (especially CanCM3) than in MERRA, mostly because of higher SWE in regions of common snow cover. Globally, the interannual variability of initial SWE is found to correlate highly with that of MERRA in locations with appreciable snow. These initial values are compared to SWE in freely running CanCM3 and CanCM4 simulations produced without data assimilation of atmospheric fields. Differences in climatological SWE relative to MERRA are similar in the freely running and assimilating CanCM3 and CanCM4 simulations, suggesting that inherent model biases are a major contributor to biases in CanSIPS snow initial conditions.


2017 ◽  
Vol 11 (4) ◽  
pp. 1647-1664 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F. P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of) SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF). Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.


2017 ◽  
Vol 18 (5) ◽  
pp. 1205-1225 ◽  
Author(s):  
Diana Verseghy ◽  
Ross Brown ◽  
Libo Wang

Abstract The Canadian Land Surface Scheme (CLASS), version 3.6.1, was run offline for the period 1990–2011 over a domain centered on eastern Canada, driven by atmospheric forcing data dynamically downscaled from ERA-Interim using the Canadian Regional Climate Model. The precipitation inputs were adjusted to replicate the monthly average precipitation reported in the CRU observational database. The simulated fractional snow cover and the surface albedo were evaluated using NOAA Interactive Multisensor Snow and Ice Mapping System and MODIS data, and the snow water equivalent was evaluated using CMC, Global Snow Monitoring for Climate Research (GlobSnow), and Hydro-Québec products. The modeled fractional snow cover agreed well with the observational estimates. The albedo of snow-covered areas showed a bias of up to −0.15 in boreal forest regions, owing to neglect of subgrid-scale lakes in the simulation. In June, conversely, there was a positive albedo bias in the remaining snow-covered areas, likely caused by neglect of impurities in the snow. The validation of the snow water equivalent was complicated by the fact that the three observation-based datasets differed widely. Also, the downward adjustment of the forcing precipitation clearly resulted in a low snow bias in some regions. However, where the density of the observations was high, the CLASS snow model was deemed to have performed well. Sensitivity tests confirmed the satisfactory behavior of the current parameterizations of snow thermal conductivity, snow albedo refreshment threshold, and limiting snow depth and underlined the importance of snow interception by vegetation. Overall, the study demonstrated the necessity of using a wide variety of observation-based datasets for model validation.


2009 ◽  
Vol 10 (1) ◽  
pp. 130-148 ◽  
Author(s):  
Benjamin F. Zaitchik ◽  
Matthew Rodell

Abstract Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow-covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation—SCA indicates only the presence or absence of snow, not snow water equivalent—and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to nonphysical artifacts in the local water balance. In this paper, a novel assimilation algorithm is presented that introduces Moderate Resolution Imaging Spectroradiometer (MODIS) SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm uses observations from up to 72 h ahead of the model simulation to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes during the snow season and, in some regions, on into the following spring.


2016 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F.P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However this provides no information on the actual amount of water stored in a snowpack i.e. the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ meteorological observations and a modified version of the seNorge snow model to estimate climate sensitivity of SWE and snowmelt runoff in the Langtang catchment in Nepal. Landsat 8 and MOD10A2 snow cover maps were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 % and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an Ensemble Kalman filter. The approach of modelling snow depth in a Kalman filter framework allows for data-constrained estimation of SWE rather than snow cover alone and this has great potential for future studies in the Himalayas. Climate sensitivity tests with the optimized snow model show a strong decrease in SWE in the valley with increasing temperature. However, at high elevation a decrease in SWE is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature. Finally the climate sensitivity study revealed that snowmelt runoff increases in winter and early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature.


2020 ◽  
Vol 163 ◽  
pp. 06003
Author(s):  
Evgenii Churiulin ◽  
Vladimir Kopeykin ◽  
Natalia Frolova ◽  
Inna Krylenko

Seasonal snow cover has a significant impact on forming spring floods. Sparse snow course-measuring network does not meet the requirements of modern tasks related to the technologies of numerical weather prediction (NWP) systems and runoff formation models. Moreover, insufficient volume of hydrometeorological data creates a need to improve spring floods forecasting methods by means of available modern hydrometeorological information related to snow cover. To work out an efficient solution to the issue of initial snow data preparation we need a complex approach including the use of data from satellite, atmospheric models, physical-mathematical models of snow cover and insitu information. This approach will provide modern NWP and hydrological models with reliable initial data on snow cover (snow water equivalent – SWE, snow density – SD). The main purpose of our investigation is related to approbation of satellite data and development of snow cover calculation methods for NWP and hydrological models. Numerous SWE and SD experiments have been performed in order to achieve this aim. A regional snow data assimilation system for COSMORu was implemented during the research. Moreover, a new method of hydrological modelling of spring floods based on ECOMAG model with initial information from COSMO-Ru, SnoWE and in-situ data has been proposed and tested.


2013 ◽  
Vol 14 (1) ◽  
pp. 203-219 ◽  
Author(s):  
Eric Brun ◽  
Vincent Vionnet ◽  
Aaron Boone ◽  
Bertrand Decharme ◽  
Yannick Peings ◽  
...  

Abstract The Crocus snowpack model within the Interactions between Soil–Biosphere–Atmosphere (ISBA) land surface model was run over northern Eurasia from 1979 to 1993, using forcing data extracted from hydrometeorological datasets and meteorological reanalyses. Simulated snow depth, snow water equivalent, and density over open fields were compared with local observations from over 1000 monitoring sites, available either once a day or three times per month. The best performance is obtained with European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim). Provided blowing snow sublimation is taken into account, the simulations show a small bias and high correlations in terms of snow depth, snow water equivalent, and density. Local snow cover durations as well as the onset and vanishing dates of continuous snow cover are also well reproduced. A major result is that the overall performance of the simulations is very similar to the performance of existing gridded snow products, which, in contrast, assimilate local snow depth observations. Soil temperature at 20-cm depth is reasonably well simulated. The methodology developed in this study is an efficient way to evaluate different meteorological datasets, especially in terms of snow precipitation. It reveals that the temporal disaggregation of monthly precipitation in the hydrometeorological dataset from Princeton University significantly impacts the rain–snow partitioning, deteriorating the simulation of the onset of snow cover as well as snow depth throughout the cold season.


Author(s):  
Gonzalo Leonardini ◽  
François Anctil ◽  
Vincent Vionnet ◽  
Maria Abrahamowicz ◽  
Daniel F. Nadeau ◽  
...  

AbstractThe Soil, Vegetation, and Snow (SVS) land surface model was recently developed at Environment and Climate Change Canada (ECCC) for operational numerical weather prediction and hydrological forecasting. This study examined the performance of the snow scheme in the SVS model over multiple years at ten well-instrumented sites from the Earth System Model-Snow Model Intercomparison Project (ESM-SnowMIP), which covers alpine, maritime and taiga climates. The SVS snow scheme is a simple single-layer snowpack scheme that uses the force-restore method. Stand-alone, point-scale verification tests showed that the model is able to realistically reproduce the main characteristics of the snow cover at these sites, namely snow water equivalent, density, snow depth, surface temperature, and albedo. SVS accurately simulated snow water equivalent, density and snow depth at open sites, but exhibited lower performance for subcanopy snowpacks (forested sites). The lower performance was attributed mainly to the limitations of the compaction scheme and the absence of a snow interception scheme. At open sites, the SVS snow surface temperatures were well represented but exhibited a cold bias, which was due to poor representation at night. SVS produced a reasonably accurate representation of snow albedo, but there was a tendency to overestimate late winter albedo. Sensitivity tests suggested improvements associated with the snow melting formulation in SVS.


SOLA ◽  
2013 ◽  
Vol 9 (0) ◽  
pp. 148-152 ◽  
Author(s):  
Masatoshi Kuribayashi ◽  
Nam Jin Noh ◽  
Taku M. Saitoh ◽  
Ichiro Tamagawa ◽  
Yasutaka Wakazuki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document