scholarly journals Ocean Dynamics May Drive North Atlantic Temperature Anomalies

Eos ◽  
2017 ◽  
Author(s):  
Sarah Stanley

A new analysis of sea surface temperature and salinity over several decades seeks to settle the debate on which of two mechanisms underlies the Atlantic Multidecadal Oscillation.

2020 ◽  
Vol 33 (14) ◽  
pp. 6025-6045
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park ◽  
Taewook Park

AbstractThe North Atlantic (NA) basin-averaged sea surface temperature (NASST) is often used as an index to study climate variability in the NA sector. However, there is still some debate on what drives it. Based on observations and climate models, an analysis of the different influences on the NASST index and its low-pass filtered version, the Atlantic multidecadal oscillation (AMO) index, is provided. In particular, the relationships of the two indices with some of its mechanistic drivers including the Atlantic meridional overturning circulation (AMOC) are investigated. In observations, the NASST index accounts for significant SST variability over the tropical and subpolar NA. The NASST index is shown to lump together SST variability originating from different mechanisms operating on different time scales. The AMO index emphasizes the subpolar SST variability. In the climate models, the SST-anomaly pattern associated with the NASST index is similar. The AMO index, however, only represents pronounced SST variability over the extratropical NA, and this variability is significantly linked to the AMOC. There is a sensitivity of this linkage to the cold NA SST bias observed in many climate models. Models suffering from a large cold bias exhibit a relatively weak linkage between the AMOC and AMO and vice versa. Finally, the basin-averaged SST in its unfiltered form, which has been used to question a strong influence of ocean dynamics on NA SST variability, mixes together multiple types of variability occurring on different time scales and therefore underemphasizes the role of ocean dynamics in the multidecadal variability of NA SSTs.


1956 ◽  
Vol 37 (8) ◽  
pp. 413-417 ◽  
Author(s):  
Herbert Riehl

Monthly and annual sea surface temperature anomalies have been computed for a large portion of the North Atlantic Ocean for the period 1887–1936. Correlations with hurricane frequencies and tracks become evident only when periods of five years and more are considered.


2020 ◽  
Vol 33 (8) ◽  
pp. 3019-3035 ◽  
Author(s):  
Laifang Li ◽  
M. Susan Lozier ◽  
Martha W. Buckley

AbstractA mechanistic understanding of the Atlantic multidecadal variability (AMV) is highly desirable since it will considerably aid regional and global climate predictions. Although ocean dynamics have long been invoked to explain the AMV, recent studies have cast doubt on its influence. Here we evaluate the necessity of ocean dynamics for the AMV using an observationally based idealized model that isolates the contribution of atmospheric forcing to the AMV. By demonstrating that this model underestimates the magnitude of the observed sea surface temperature variability in the extratropical North Atlantic, we infer that ocean dynamics contribute significantly to the AMV in this region. This inference holds when we add anthropogenic aerosol forcing and the effects of mixed layer depth variability to the idealized model. Thus, our study suggests that ocean heat transport convergence is needed to explain sea surface temperature variability in the extratropical North Atlantic. Sustained ocean observing systems in the this region will help untangle the physical mechanisms involved.


Sign in / Sign up

Export Citation Format

Share Document